HARM RATING SYSTEM

 

The relative harm caused by a specific pollutant is difficult to assess. There are health effects but also qualitative aspects such as visibility and beauty (forest damage by acid rain). Ironically a major wind project was just rejected based on the degradation to the beauty of the area. Mercury is the present pollutant de jour. But who is to say that concerns about eating fish will be at the top of the environmental priority list forever. With the coming PM2.5 regulations and the claims that fine particulate kills 50,000 Americans per year, this pollutant may shoot to the top.

 

There are many instances where reducing one pollutant increases another. Some air pollution control processes require up to five percent of the electrical output of the plant. This means a five percent potential increase in pollutants not reduced by the process. One highly effective mercury control process increases carbon fine particulate. NOx control can easily increase sulfuric acid emissions.

 

Every choice these days is a multi-pollutant decision. Very few options provide the same degree of reduction of all the pollutants. So the decision maker must decide which pollutants are more important than others. Anticipating future allowance prices is valuable. But it is not certain that allowance trading in certain pollutants will even be an option. We contend that one factor that should go into the decision making is the total pollution quotient of each option.

 

We are providing two sets of analyses. The second set deals just with air toxics. This set deals with the entire range of pollutants. Figure l shows that U.S. emissions of pollutants from power plants are 27 billion pounds. Mercury is only 96,000 pounds. So it is included under “other toxic chemicals.” In Figure 2 we have created a pollution potential factor using the Lesser Quantity Emission Rate (LQER) numbers from an EPA draft. Where toxic chemicals did not have an LQER we assumed that the 10 tons/yr threshold was valid. Since criteria pollutants such as NOx and SOx are considered major sources when the emissions reach 100 tons/yr, we utilized this number for those two pollutants. We reasoned that, because of the associated deaths, fine particulate rated at least a 10 and maybe it should be even lower.

 

We then determined the average emissions of a 300 MW boiler by simply dividing the 300,000 MW of capacity by 1,000. We then divided the yearly emissions for this average boiler by the LQER and obtained the “Average plant Pollution Equivalent” shown in Figure 3. We used two different LQERS for mercury (these are explained in the later analysis) to compare the different impacts on the total. Then in Figure 4 we reduced the pollution equivalents to percentages.

 

Immediately we see that NOx and SO2 are the largest contributors. Mercury is third but fine particulate is almost as much using mercury LQER of 0.001. It is much more significant than mercury at the higher mercury LQER. Most people do not realize that a high percentage of power plant particulate emissions are calcium and sodium and not SiO2. These will react in the atmosphere to form PM2.5 sulfates and nitrates. Lead, chromium, arsenic and nickel combined are either nearly as important as or four times more important than mercury.

 

There is the question of 95 percent SO2 removal (required in some consent decrees) versus the lower efficiencies required typically. From Figure 4 it is seen that an additional five percent SO2 removal has the same benefit as a 10 percent mercury reduction in the worst case scenario.

 

Some are advocating for a mercury cap of five tons at an early date. This will require 90 percent mercury removal. It will be much less costly to achieve 80 percent removal. For a fraction of the cost of achieving the additional 10 percent mercury removal one can reduce the total pollution potential.


 

FIGURE 1:  Total U.S. Emissions (millions lbs.)

 

 

FIGURE 2:  Lesser Quantity Emission Rates

 

 

 

 

 

 

Chemical

 Emissions

 

 

Chemical

LQER

Hydrochloric Acid

533.67     

 

 

Mercury

0.001      

Sulfuric Acid

116.10     

 

 

Chromium Compounds

0.01        

Hydrogen Fluoride

55.84     

 

 

Lead Compounds

0.01        

Ammonia

4.60     

 

 

Arsenic

0.01        

Barium Compounds

1.39     

 

 

Nickel Compounds

0.10        

Zinc Compounds

1.34     

 

 

Selenium Compounds

0.10        

Vanadium Compounds

1.23     

 

 

Barium Compounds

1.00        

Nickel Compounds

0.70     

 

 

Zinc Compounds

1.00        

Barium Compounds

0.43     

 

 

Vanadium Compounds

1.00        

Selenium Compounds

0.43     

 

 

Hydrochloric Acid

10.00        

Total Other Chemicals

1.85     

 

 

Sulfuric Acid

10.00        

Subtotal

717.58     

 

 

Hydrogen Fluoride

10.00        

SO2

18,000.00     

 

 

Ammonia

10.00        

NOx

8,000.00     

 

 

PM2.5

10.00        

PM2.5

1,000.00     

 

 

SO2

100.00        

GRAND TOTAL

27,717.58     

 

 

NOx

100.00        

 

 

 

 

 

 

                                                                                                        

FIGURE 3:  Average Plant Pollution Equivalent

 

 

FIGURE 4:  Pollution Equivalent %s of Total

 

 

 

 

 

 

Chemical

TEQ

TEQ

 

Chemical

TEQ %

 

(mercury 0.001)

(mercury 0.01)

 

 

(mercury 0.001)

Mercury

91,143       

9,114       

 

SO2

29.88      

Hydrochloric Acid

53,367       

53,367       

 

NOx

16.60      

Chromium Compounds

27,694       

27,694       

 

Mercury

15.13      

Lead Compounds

20,876       

20,876       

 

PM2.5

13.28      

Sulfuric Acid

11,610       

11,610       

 

Hydrochloric Acid

8.86      

Arsenic

11,356       

11,356       

 

Chromium Compounds

4.60      

Nickel Compounds

7,281       

7,281       

 

Lead Compounds

3.47      

Hydrogen Fluoride

5,584       

5,584       

 

Sulfuric Acid

1.93      

Selenium Compounds

4,306       

4,306       

 

Arsenic

1.88      

Barium Compounds

1,821       

1,821       

 

Nickel Compounds

1.21      

Total Other Chemicals

7,411       

7,411       

 

Hydrogen Fluoride

0.93      

SUBTOTAL

242,449       

160,420       

 

Selenium Compounds

0.71      

SO2

180,000       

180,000       

 

Barium Compounds

0.30      

NOx

100,000       

100,000       

 

Total Other Chemicals

1.23      

PM2.5

80,000       

80,000       

 

TOTAL

100.00      

GRAND TOTAL

602,449       

520,420       

 

 

 

 

 

 

 

 

Why are we even talking about all the utility HAPS?

Analysis of Air Toxics in Figure 5, it is plain that only a few air toxics account for most of the weight of toxics emitted. However, in Figure 6 it is shown that there is a huge difference in toxicity between HAPS. Figure 7 shows toxicity based on 2 LQERs for mercury. The average plant has a toxic quotient of 242,000. It should be pointed out that this quotient already reflects 90 percent removal of the metals other than mercury. So the quotient with no air pollution control equipment could easily be 800,000. If one were to require 90 percent reduction from this uncontrolled level then the toxicity quotient or toxic equivalent would be 80,000. If mercury were treated separately, the raw quotient would be 700,000. Meeting a 70,000 quotient limit could easily be accomplished with the normal particulate equipment and SO2 scrubber.

 

The original EPA draft listed mercury with an LQER of 0.1. We arbitrarily changed this to 0.001 to reflect the recent focus on mercury as the highest priority pollutant. In Figure 8 we compare the mercury impact with the LQER both at the 0.001 level and at 0.01 (the toxicity for lead and chromium). As shown in Figure 8, mercury is either 7 percent of the toxics to only 5 percent.

 

These comparisons should give legislators pause before requiring a 90 percent mercury reduction. Reducing mercury the extra 10 percent could add as much as 10 mils/kWh to electricity cost. In the base case, an extra 10 percent reduction of HCl, chromium and lead would accomplish the same toxicity reduction but at a far lower cost (less than 0.5 mil/kWh). In the case where mercury is assigned a lower toxicity, the extra 10 percent mercury reduction only reduces total toxicity by 0.5 percent.

 

FIGURE 5:  Total U.S. Emissions (millions lbs.)

 

 

FIGURE 6:  Lesser Quantity Emission Rates

 

 

 

 

 

 

 

 

 

 

Chemical

 Emissions

 

 

Chemical

LQER

 

 

Hydrochloric Acid

533.67     

 

 

Mercury

0.001      

 

 

Sulfuric Acid

116.10     

 

 

Chromium Compounds

0.01        

 

 

Hydrogen Fluoride

55.84     

 

 

Lead Compounds

0.01        

 

 

Ammonia

4.60     

 

 

Arsenic

0.01        

 

 

Barium Compounds

1.39     

 

 

Nickel Compounds

0.10        

 

 

Zinc Compounds

1.34     

 

 

Selenium Compounds

0.10        

 

 

Vanadium Compounds

1.23     

 

 

Barium Compounds

1.00        

 

 

Nickel Compounds

0.70     

 

 

Zinc Compounds

1.00        

 

 

Barium Compounds

0.43     

 

 

Vanadium Compounds

1.00        

 

 

Selenium Compounds

0.43     

 

 

Hydrochloric Acid

10.00        

 

 

Total Other Chemicals

1.85     

 

 

Sulfuric Acid

10.00        

 

 

  GRAND TOTAL

717.58   

 

 

Hydrogen Fluoride

10.00        

 

 

 

 

 

 

Ammonia

10.00        

 

 

FIGURE 7:  Average Plant Toxic Equivalent

 

 

FIGURE 8:  TEQ %s of Total

 

 

 

 

 

 

 

 

Chemical

TEQ

TEQ

 

Chemical

TEQ %

TEQ %

 

(mercury 0.001)

(mercury 0.01)

 

 

(mercury 0.001)

(mercury 0.01)

Mercury

91,143       

9,114       

 

Mercury

37.59      

5.68      

Hydrochloric Acid

53,367       

53,367       

 

Hydrochloric Acid

22.01      

33.27      

Chromium Compounds

27,694       

27,694       

 

Chromium Compounds

11.42      

17.26      

Lead Compounds

20,876       

20,876       

 

Lead Compounds

8.61      

13.01      

Sulfuric Acid

11,610       

11,610       

 

Sulfuric Acid

4.79      

7.24      

Arsenic

11,356       

11,356       

 

Arsenic

4.68      

7.08      

Nickel Compounds

7,281       

7,281       

 

Nickel Compounds

3.00      

4.54      

Hydrogen Fluoride

5,584       

5,584       

 

Hydrogen Fluoride

2.30      

3.48      

Selenium Compounds

4,306       

4,306       

 

Selenium Compounds

1.78      

2.68      

Barium Compounds

1,821       

1,821       

 

Barium Compounds

0.75      

1.14      

Total Other Chemicals

7,411       

7,411       

 

Total Other Chemicals

3.06      

4.62      

  GRAND TOTAL

242,449       

160,420       

 

  GRAND TOTAL

100.00      

100.00      

                       

 

 

Figure 9 provides the quotient factor and total quotient for each of the many HAPs emitted by power plants. These are based on annual emissions nationwide as reported in the TRI inventory.

 

Figure 9.  U.S. Utility Air Toxics Analysis

 

Total Air

 

Total U.S.

Average

Chemical

 Emissions (lbs.)

Factor

Quotient

300 MW Plant

1,2,4-Trimethylbenzene

32,537     

0.1     

325,370   

325   

Acetaldehyde

2,023     

0.1     

20,230   

20   

Acrolein

679     

1.0     

679   

1   

Ammonia

4,601,699     

10.0     

460,170   

460   

Antimony Compounds

9,208     

0.01   

920,800   

921   

Arsenic

367     

0.01   

11,355,600   

11,356   

Arsenic Compounds

113,189     

Barium

427,217     

1.0     

1,821,227   

1,821   

Barium Compounds

1,394,010     

Benzene

2,310     

1.0     

2,310   

2   

Benzo (G,H,I) Perylene

1,148     

0.1     

11,480   

11   

Beryllium Compounds

3,455     

0.1     

34,550   

35   

Certain Glycol Ethers

2     

0.1     

20   

0   

Chlorine

137,618     

10.0     

13,762   

14   

Chlorine Dioxide

0     

1.0     

0   

0   

Chloromethane

250     

0.1     

2,500   

3   

Chromium

659     

0.01    

27,694,400   

27,694   

Chromium Compounds (Except Chromite Ore Mined in the Transvaal Region)

276,285     

Cobalt

187     

0.1     

356,060   

356   

Cobalt Compounds

35,419     

Copper

521     

1.0     

211,722   

212   

Copper Compounds

211,201     

Cyclohexane

5     

0.1     

50   

0   

Diisocyanates

1     

0.1     

10   

0   

Dioxin and Dioxin-Like Compounds

1     

0.0001

10,000   

10   

Ethylbenzene

 

0.1     

0   

0   

Ethylene

1,736     

0.1     

17,360   

17   

Ethylene Glycol

4,665     

0.1     

46,650   

47   

Fluorine

429     

1.0     

429   

0   

Formaldehyde

58,440     

0.1     

584,400   

584   

Hexachlorobenzene

58     

0.1     

580   

1   

Hydrazine

5     

0.01    

500   

1   

Hydrochloric Acid (1995 and after “Acid Aerosols” Only)

533,672,077     

10.0     

53,367,208   

53,367   

Hydrogen Fluoride

55,840,272     

10.0     

5,584,027   

5,584   

Lead

8,915     

0.01   

20,876,400   

20,876   

Lead Compounds

199,849     

Manganese

3,694     

1.0     

387,276   

387   

Manganese Compounds

383,582     

Mercury

4,691     

0.001 

91,143,000   

91,143   

Mercury Compounds

86,452     

Methanol

4,140     

10.0     

414   

0   

Methyl Ethyl Ketone

657     

0.1     

6,570   

7   

Molybdenum Trioxide

2,770     

0.1     

27,700   

28   

N-Hexane

66,532     

0.1     

665,320   

665   

Napththalene

605     

0.1     

6,050   

6   

Nickel

25,883     

0.1     

7,280,870   

7,281   

Nickel Compounds

702,204     

Ozone

250     

10.0     

25   

0   

Pentachlorobenzene

60     

0.1     

600   

1   

Phenanthrene

8     

0.1     

80   

0   

Phenol

9     

0.1     

90   

0   

Phosphorus (Yellow or White)

53,519     

1.0     

53,519   

54   

Polychlorinated Biphenyls

685     

1.0     

685   

1   

Polycyclic Aromatic Compounds

7,410     

0.1     

74,100   

74   

Propylene

1,998     

1.0     

1,998   

2   

Selenium

3,935     

0.1     

4,305,830   

4,306   

Selenium Compounds

426,648     

Silver

0     

1.0     

2,230   

2   

Silver Compounds

2,230     

Sulfuric Acid (1994 and after “Acid Aerosols” Only)

116,103,266     

10.0     

11,610,327   

11,610   

Thallium Compounds

4,641     

0.01   

464,100   

464   

Toluene

3,270     

0.1     

32,700   

33   

Vanadium (Except when contained in an alloy)

74,978     

1.0     

1,309,328   

1,309   

Vanadium Compounds

1,234,350     

Xylene (Mixed Isomers)

1,871     

0.1     

18,710   

19   

Zinc (Fume or Dust)

1,053     

1.0     

1,338,989   

1,339   

Zinc Compounds

1,337,936     

TOTAL

717,575,764     

 

242,449,004   

242,449