

FGD Purge ZLD

Presentation By **Devesh Mittal |& | Greg Mandigo** McIlvaine Webinar November 12th 2008

ZLD Zero Liquid Discharge

"Concentration" A Solution To Pollution!

ZLD A Viable Reality

Fusina

LaSpezia

Torrevaldaliga

Sulcis

ENEL, Italy Locations

Brindisi

ZLD A Viable Reality

ENEL Location	Power MW (Wet FGD)	ZLD Cap. in GPM	Date Stopped Discharge	
Brindisi	4 x 660	BC 2 X 300 FC 1 X 77	August 2008	
Fusina	2 x 330 2 x 165	BC 2 X 150 FC 1 X 55	May 2008	
Sulcis	1 X 2 40	BC 1 X 55 FC 1 X 22	June 2008	
LaSpezia	1 x 600	BC 1 x 66 FC 1 x 27	November 2008 (Under Testing)	
Torrevaldaliga	3 x 660	BC 2 X 155 FC 1 X 62	December 2008 (New Power Plant)	

© Aquatech International Corporation 2008 (DM Nov 10, 08) BC = Brine Concentrator FC = Crystallizer GPM = Gallons / Minute MW = Megawatt

Typical FGD Purge WW

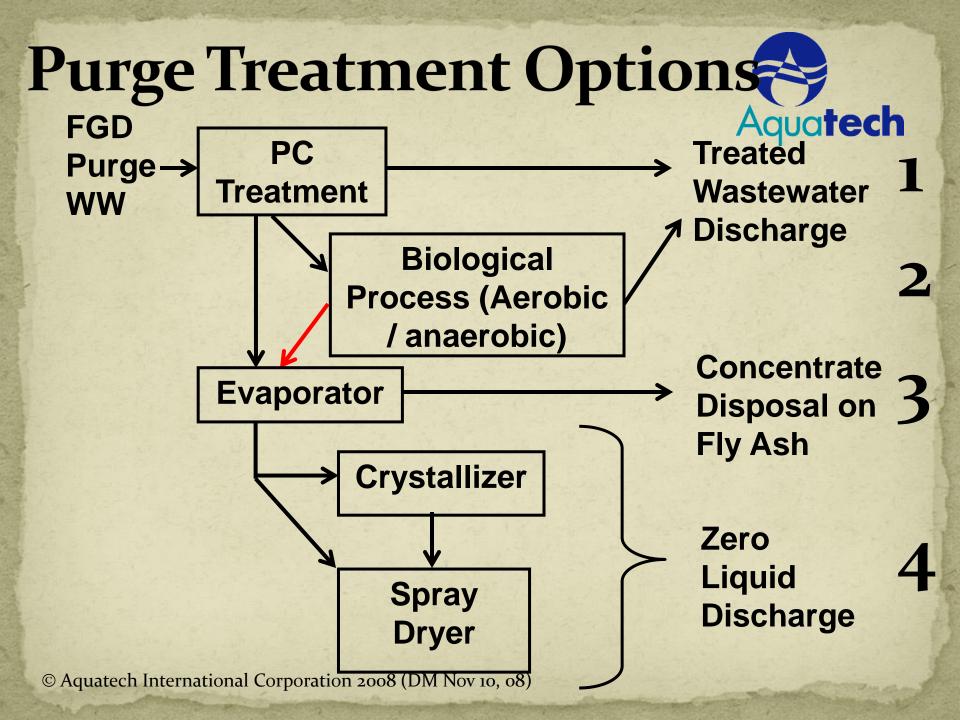
- pH:
- Temperature:
- Hardness (Ca + Mg):Sulfates:
- Chlorides:
- Total dissolved solids:
- COD / BOD:
- Trace Heavy metals:
- Selenium:
- Boron:
- Ammonia Nitrogen:
- Nitrate Nitrogen:

6.5 100 17,500 3500 10,000 20,000 None 10 0.5 25

Aquatech 8.0 oF 110 28,000 ppm CaCO₃ 7000 ppm 30,000 ppm 50,000 ppm ppm * 1500 100 ppm 15 ppm 650 ppm 35 ppm

ppm

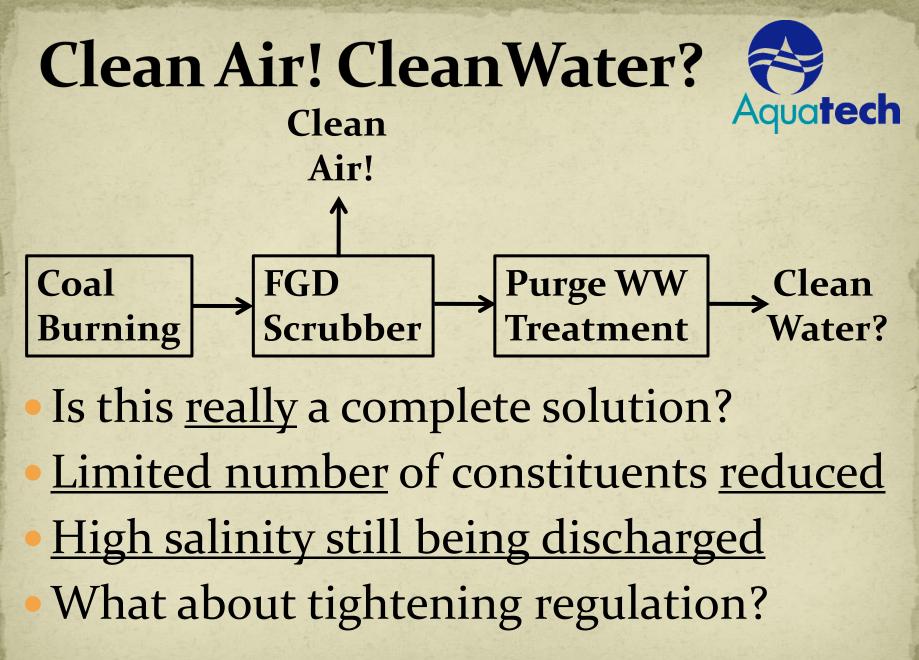
500


*dependent on usage of buffers like DBA or Formic acid © Aquatech International Corporation 2008 (DM Nov 10, 08)

5

25

Key Purge WW Design Variables Quality of coal Make up water source Scrubber design Scrubbing agent composition Scrubber additives (DBA, other organics)



FGD Purge Treatment In USA So Far

Physical Chemical (Well Established)

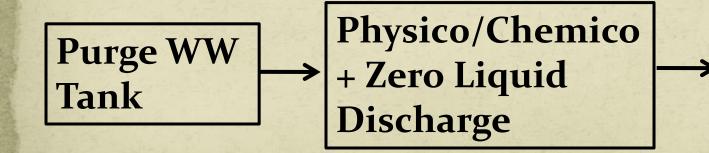
- Calcium Sulfate desaturation & clarification
- Sulfide precipitation & clarification
- Biological treatment (Developing)
 - Selenium & heavy metal reduction
 - BOD & or N reduction

Troubling Constituents

Constituent	Key Issue / Discharge Limit	Impact by physical chemical or biological treatment
Calcium	Scaling	Reduction by precipitation
Sulfate	Scaling w/hardness	Settling in clarifier w/hardness
Chloride	Corrosion	No reduction
TDS	Discharge issues	No reduction; likely to increase
Mercury	Limits getting stringent i.e. in ppt	Reduction possible; requires elaborate process including ion selective ion exchange resins
Selenium	Limits getting stringent i.e. ppb	Selenites can be reduced in physical chemical; lower limits require biological treatment
Nitrates	Some cases have seen 3 ppm total nitrogen	Requires nitrogen reduction via biological process; difficult in high TDS environment
Trace metals	Site specific issues	Depends on the trace metal
Boron	Site specific issues	No reduction

© Aquatech International Corporation 2008 (DM Nov 10, 08) TDS = total dissolved solids ppt = parts per trillion ppb = parts per billion

Dilution Vs. Concentration


Dilution Water (for process control)

Physico/Chemico + Biological Treatment

→ Liquid Discharge

> Sludge to landfill

Myths Against ZLD

Technology does not exist Existing technology Does not work Is extremely expensive • Is difficult to operate

Fact Check!!!

Technology does not exist Existing technology

- Does not work
- Is extremely expensive cost comparable to physico chemical & biological treatment
- Is difficult straight forward to operate
- No liquid discharge; complete solution
- Process simplicity; elimination of biological treatment possible
- No specialty bugs or bacteria; doesn't require a biologist or biochemist to run the unit
- Higher operating reliability

ZLD Selection Criteria

- Corporate social initiative (ENEL)
- Permitting issues
 - Discharge not allowed
 - Discharge limits stringent or not achievable by physical chemical or biological treatment
- Waste water characteristics
 - Variation due to variety of coal used
 - Constituents not treatable by other processes e.g. boron
- Cost of waste water treatment
 - Cost comparison with biological treatment
 - Capacity of waste water treatment unit

ENEL Design Purge WW

Parameter as ppm	Brindisi	Fusina	LaSpezia	Sulcis	Torrevaldaliga
Suspended Solids	1 to 1.5%				
Calcium, Ca	42,00	8,400	8,400	1,200	12,000
Magnesium, Mg	250	4,500	4,500	1,200	6,400
Sulfate, SO4	11,900	10,900	10,900	24,500	17,700
Chloride, Cl	22,800	25,000	25,000	15,400	30,000
Nitrate, NO3	300		300		300
Fluoride, F	25		350		1,000
Alkalinity, HCO3	80		600		600

Each power plant uses multiple sources of coal; worst value from several coal values reported above for each parameter
Each ZLD plant designed for over 30,000 ppm TDS in feed

Lime Clarifiers

Brindisi Pictures Aquatech

Brine Concentrator

Crystallizer

Belt Press

© Aquatech International Corporation 2008 (DM Nov 10, 08)

Brindisi Pictures Aquatech

Sludge Handling

Sulcis

LaSpezia

Torrevaldaliga

ration 2008 (DM Nov 10, 08)

ENEL Plant Operation Coal

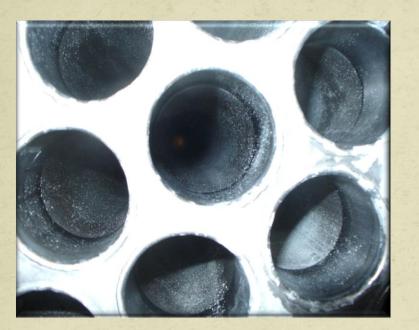
- Imported from several countries
- Variability in purge waste water
- Evaporator
 - Operated in seeded slurry mode
 - WW feed variability managed by local operators

Sludge

- Calcium carbonate sludge recycled to scrubber
- Evaporator sludge
 - Approx. 85% plus dry solids
 - Non classified; disposed through authorized agency
 - Passed leachability (TCLP)

• Distillate recycled to scrubber and cooling tower © Aquatech International Corporation 2008 (DM Nov 10, 08)

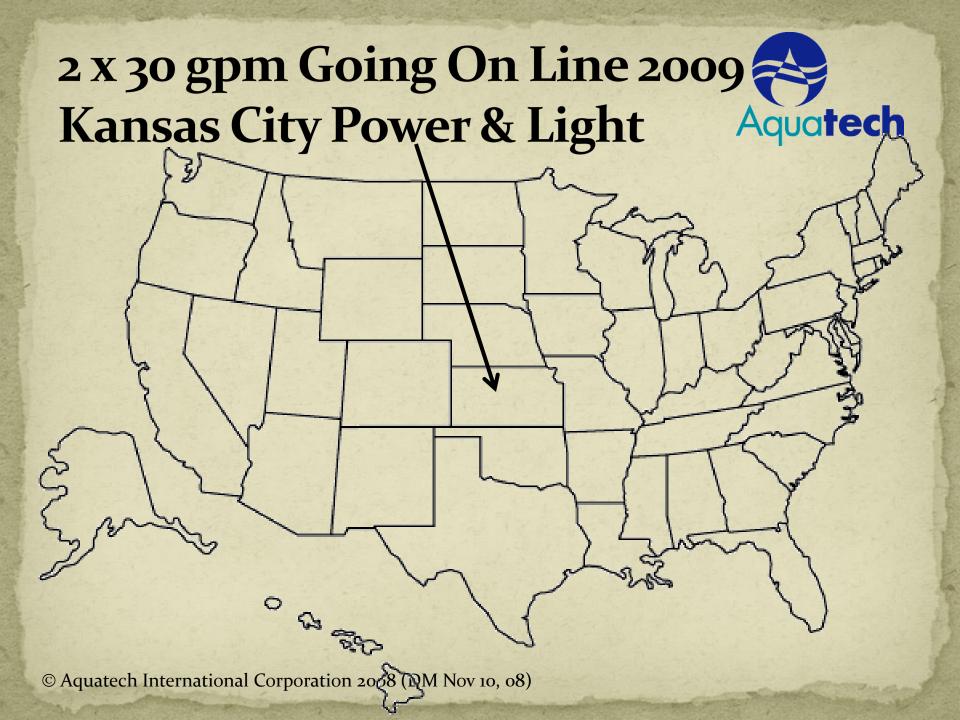
ZLD Design



Requires prior experience Careful consideration of waste water data Proper selection of metallurgy Proper selection of operating parameters i.e. pH, concentration factors, etc. Design safety margin important

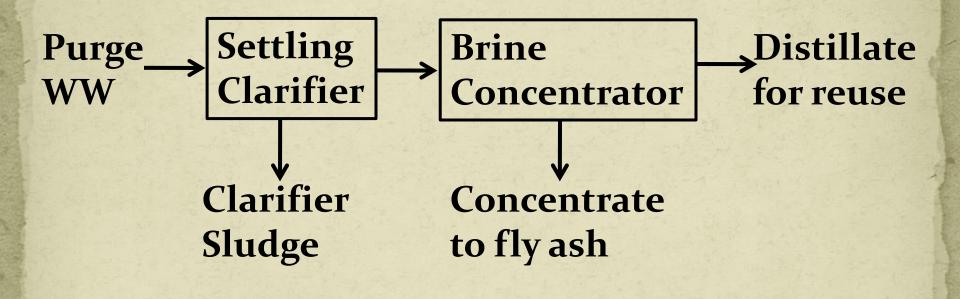
Once properly designed, operating issues are straight forward

ENEL Operation



Clean tubes after 6 months of operation
Equipment operated by local operators
Operating parameter controls already set

Aquatech's Other Coal Connections



Aquatech evaporators in IGCC units operating for 20 to 25+ years North Dakota Gasification (Lurgi Process) • Tampa Electric (Texaco Process) Demkolec IGCC (Shell Process) **Upcoming IGCC projects** CO2 capture retrofits or new units Coal plant cooling tower ZLD

KCPL System

KCPL Design Purge WW

• pH	6.0	
 Suspended solids 	30,000	ppm
• Calcium	4,250	ppm
• Magnesium	950	ppm
• Sodium	590	ppm
• Potassium	25	ppm
• Iron	15	ppm
• Chloride	10,000	ppm
• Sulfate	1,320	ppm
• Nitrate	90	ppm
• Fluoride	12	ppm
• Silica	28	ppm
• Alkalinity	280	ppm

CLEAN COAL TECHNOLOGY, YES. DIRTY PLANET, NO.

Aquatech ZLD system for FGD at ENEL's Brindisi, Italy 4 x 660 MWe power plant.

Enel

FGD Purge ZLD

"Truly Part Of" Clean Coal

Additional Information

- Devesh Mittal 281.794.3113 or <u>mittald@aquatech.com</u>
- Aquatech Technical Material
 - International Water Conference Papers
 - IWC o6 Hoskin & Mittal
 - IWC o6 Bjorklund
 - IWC 07 Mandigo
 - IWC o8 Donadono & Rao
 - Project profiles
 - Technical write ups and flow diagrams

Project specific design assistance

Powergen 2008 Aquatech Floor Give Away Sponsor

Make or model of the car is yet to be declared. Above from 2007

Booth # 1412