Filter Media Selection for Utility Baghouse Applications

Prepared for McIlvaine Hot Topic Hour Zachary J. Arndt Sargent & Lundy LLC Zachary.J.Arndt@sargentlundy.com

August 11, 2011

- US EPA Policies
- Required Flue Gas Design Conditions
- Typical Flue Gas Design Conditions
- Fabric Filter (FF) Bag Concerns
- FF Bag Materials for Utility Baghouse Applications
- Typical PPS FF Bag Specifications
- Questions

USEPA Policies

- Recent USEPA Policies will require more baghouse installations on utility boilers in order to be in compliance with the following:
 - Utility MACT
 - » Emission limits on Hg, Acid Gases, Non-Hg Metals
 - Cross-State Air Pollution Rule
 - » Reduce NO_x, SO₂, PM_{2.5}
 - BART (Best Available Retrofit Technology) or Regional Haze Rule
 - » Protect visibility in Class I Areas

Required Flue Gas Design Conditions

- Design Flow (acfm)
- Inlet Gas Temperature
 - Normal
 - Excursion
- Solid loading to baghouse
- Acid Concentrations

- Alkali Concentrations
- Oxygen Concentration
- Moisture Level
- Bag Cleaning Preference (Reverse Air; Pulse Jet)
- Method for bag protection during temperature excursions

Typical Flue Gas Design Conditions @ Air Heater Outlet

Design Condition	Units	Powder River Basin Coal	Eastern Bituminous Coal	
Inlet flue gas temperature	F	275 to 330	300 to 330	
Inlet N ₂ level	vol%	73	73	
Inlet O ₂ level	vol%	7	7	
Inlet H ₂ O level	vol%	10	10	
Inlet CO ₂ level	vol%	10	10	
Inlet SO ₂ level	ppmv	350	1400	
Inlet SO ₃ level	ppmvd@3%O ₂	10	25 to 55	
Inlet NH ₃ level	ppmvd@3%O ₂	2	2	
Inlet Mercury level	lb/TBtu	10	10	
DSI feed	lb/hr	Site Specific Site Specific		
ACI feed	lb/hr	Site Specific	Site Specific	

 $_{s}$ *Baghouse System Numbers are approximate concentrations dependent on the fuel selection

Fabric Filter Bag Concerns

- Chemical degradation due to acid attack
 - Molecular deterioration and weight change
- Thermal degradation due to elevated temperature and oxygen levels
 - Separation and reaction with one another to change the properties of the polymer
 - Reduction of ductility and embrittlement
 - Cracking, elongation, and porous openings

Fabric Filter Bag Concerns

• High temperature and Oxygen Concentration Level affects on Bag Life

Fabric Filter Bag Materials for Utility Baghouse Applications

Fiber	Туре	Max. Cont. Oper. Temp F	Max. Surge Oper. Temp F	Tensile Strength	Abrasion Resistance	Chemical Resistance	Alkali Resistance
PPS	Felted	375	425	Very Good	Excellent	Excellent	Excellent
PTFE w/PTFE Membrane	Woven	450	500	Average	Fair	Excellent	Excellent
Fiberglass w/PTFE Membrane	Woven	450	550	Excellent	Fair	Good	Fair
P84®	Felted	500	550	Very Good	Excellent	Very Good	Fair

Typical PPS PJFF Bag Specifications

- Thermal Resistance
 - Max. Cont. Operating 375°F
 - Max. Surge Operating 425°F
- Tensile Strength
 - Warp Direction The 0° direction to the edge of the cloth (Width)
 - » 145 lbs/inch minimum
 - Fill Direction The 90° direction to the edge of the cloth (Length)
 - » 195 lbs/inch minimum
- Needle felt

- Bag Length
 - 8-10 Meters
- Weight
 - 16-18 oz/sq. yd.
- Thickness
 - .06 inch minimum
- Density
 - $0.3 \text{ g/cm}^3 \text{ minimum}$
- Mullen Burst Amount of pressure required to puncture a bag
 - 350 psi minimum

Questions?

