Interactions Between SO$_3$, HCl, HBr, PM and Trona Injection in DSI

Yougen Kong, Ph.D., P.E.
Solvay Chemicals, Inc.

McIlvaine Company Hot Topic Hour on “SO$_3$ Measurement and Control”
March 08, 2012
Regulations

◆ MATS - coal-fired boilers
 ● HCl: 0.002 lb/mmBTU
 ● Mercury: 1.2 lb/TBTU
 ● PM: 0.03 lb/mmBTU

◆ Proposed Industrial Boiler MACT – solid fuel
 ● HCl: 0.022 lb/mmBTU
Trona Injection to Mitigate Acid Gases

Coal → Boiler → Economizer → SCR → Air Heater → ESP → Wet Scrubber

CaBr₂

SO₂, SO₃, HCl, HBr, NOₓ, Hg

NH₃

HBr

Trona
Chemical Reactions in Flue Gas

◆ Trona Calcination

\[2(\text{Na}_2\text{CO}_3 \cdot \text{NaHCO}_3 \cdot \text{2H}_2\text{O}) \text{(s)} \rightarrow 3\text{Na}_2\text{CO}_3\text{(s)} + 5\text{H}_2\text{O(g)} + \text{CO}_2\text{(g)}\]

◆ Acid Gas Neutralization Reactions

\[
\begin{align*}
\text{Na}_2\text{CO}_3 + \text{SO}_2 + \frac{1}{2}\text{O}_2 & \rightarrow \text{Na}_2\text{SO}_4 + \text{CO}_2 \\
\text{Na}_2\text{CO}_3 + \text{SO}_3 & \rightarrow \text{Na}_2\text{SO}_4 + \text{CO}_2 \\
\text{Na}_2\text{CO}_3 + 2\text{HCl} & \rightarrow 2\text{NaCl} + \text{H}_2\text{O} + \text{CO}_2 \\
\text{Na}_2\text{CO}_3 + 2\text{HBr} & \rightarrow 2\text{NaBr} + \text{H}_2\text{O} + \text{CO}_2
\end{align*}
\]
Chemical Reactions in Flue Gas

- $\text{Na}_2\text{CO}_3 + \text{SO}_3 \rightarrow \text{Na}_2\text{SO}_4 + \text{CO}_2$
 - Sometimes SO_3 is used to condition fly ashes to enhance ESP performance.
 - Trona is effective in mitigating SO_3 and can lower the ash resistivity thus conditioning the ESP. However trona does add the dust load for ESP and may cause a problem on undersized units.

- $\text{Na}_2\text{CO}_3 + 2\text{HCl} \rightarrow 2\text{NaCl} + \text{H}_2\text{O} + \text{CO}_2$
- $\text{Na}_2\text{CO}_3 + 2\text{HBr} \rightarrow 2\text{NaBr} + \text{H}_2\text{O} + \text{CO}_2$
 - HCl and HBr can oxidize mercury, thus enhance mercury removal.
 - HCl is the surrogate for all acid gases in both MATS (Utility MACT) and Boiler MACT.
Solution: Location!

- **Boiler**
 - Coal
 - CaBr_2

- **Economizer**
 - NH_3
 - $\text{SO}_2, \text{SO}_3, \text{HCl}, \text{HBr}, \text{NO}_x, \text{Hg}$

- **SCR**
 - HBr

- **Trona**

- **Air Heater**

- **ESP**

- **Wet Scrubber**

SOLVAY
Summary

- Flue gas treatment has become a chemical processing plant
 - Treating one component can affect others
 - Good understanding of chemistries helps
 - Apply system approach

- All parties need to work closely, especially the one who designs and integrates the system should involve all suppliers in the trial and design of permanent systems.
Questions?

Yougen Kong, P.E., Ph.D.
Technical Development Manager
Solvay Chemicals, Inc.
3333 Richmond Avenue
Houston, TX 77098
Phone: 713-525-6890
yougen.kong@solvay.com

For more information, please visit www.solvair.us