Babcock Power Environmental Inc.

Impact of Mixing on Performance of Dry Sorbent Injection/Activated Carbon Tony Licata

Introduction

- How do we achieve lower emissions of Hg and SO₃?
- What is the impact of mixing on sorbent usage?
- What tools are available to predict performance?

www.babcockpower.com

Study Object

- Modeling study will provide a design to improve the RMS (distribution) of sorbent in the flue gas that will enhance Hg or SO₃ removal.
 - Improved mixing increases NTUs which allows system to maintain higher removals and higher sorbent utilization
 - Mixing required
 - Location and number of mixers
 - RMS<10%
- Use existing test and new modeling data to develop a model that will estimate:
 - Amount of sorbent required
 - Performance

RMS/NTUs Performance Predictions

- ESPs
- SCRs
- FGDs

Definition - Transfer of a gaseous component (absorbate) from the gas phase to a liquid (absorbent) phase through a gas-liquid interface

- •Number of contact stages required to achieve a required % removal
- •Mixing increases contact or reduces required NTUs
- •Can relate RMS to NTUs completeness of mixing
- •Improved mixing increases NTUs which allows system to maintain higher removals and relatively high utilization of sorbents

NTU vs. % Capture NTU = - Ln (1-% removal)

Working principle:

leading egde vortices created by gas flows arriving at shaped plates under an angle of attack generate turbulences for mixing purposes

Static Mixer

 Delta Wings Can either be used to direct inject sorbent or as cross mixers after injection to achieve optimum mass transfer

Cross Mixers

Impact of RMS on NH₃ Slip

Source of data - FERCO Engineering

Impact of RMS on ESP Performance

Copyright © 2011 Babcock Power Inc. All rights reserved.

www.babcockpower.com

Delta Wing® Modeling Case II Study

Description: Duct A sorbent injection upstream of hot ESP, long straight duct with $2 - 45^{\circ}$ elbows and expansion section to ESP 6 injection nozzles

Without Delta Wing MixersWith Delta Wing MixersRMS = 15.6%RMS = 1.5%Max. DeviationMax. Deviation+23.8%+3.0%-36.2%-2.3%

Delta Wing® Modeling Case II Study

Description: Duct B Air heater outlet to ESP inlet, 8 injection nozzles, 3 - 900 elbows & 2 - 450 bends

Without Delta Wing MixersWith Delta Wing MixersRMS = 22.4%RMS = 2.2%Max. DeviationMax. Deviation+24.4%+5.7%-58.5%-2.7%

Copyright © 2011 Babcock Power Inc. All rights reserved.

Delta Wing® Modeling Case III Study

Description; Air heater outlet with short duct to expanding ESP inlet

Without Delta Wing Mixers RMS = 15.4%Max. Deviation +36.7%-29.7% With Delta Wing Mixers RMS = 5.7% Max. Deviation + 10.0% - 12.0%

Full duct mixing with Delta Wing® cross mixer

Delta Wing is a proprietary technology provided under license to Babcock Power from Balcke Dürr

Sorbent Injection

W/O Mixers

With Mixers

Observations

- Low RMS required to meet high performance levels
- Lowering RMS reduces sorbent usage
- RMS + (NTUs) predictive tool
- Physical modeling faster and more accurately predictive performance than CFD
- Delta Wing mixers can be used to lower RMS

Thank You

Tony Licata 508-854-3853 Tlicata@babcockpower.com

