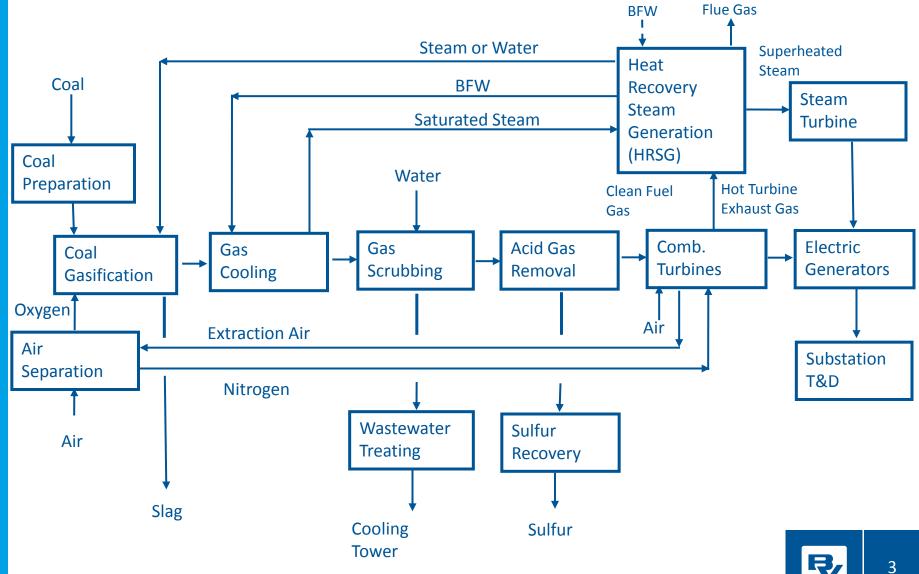
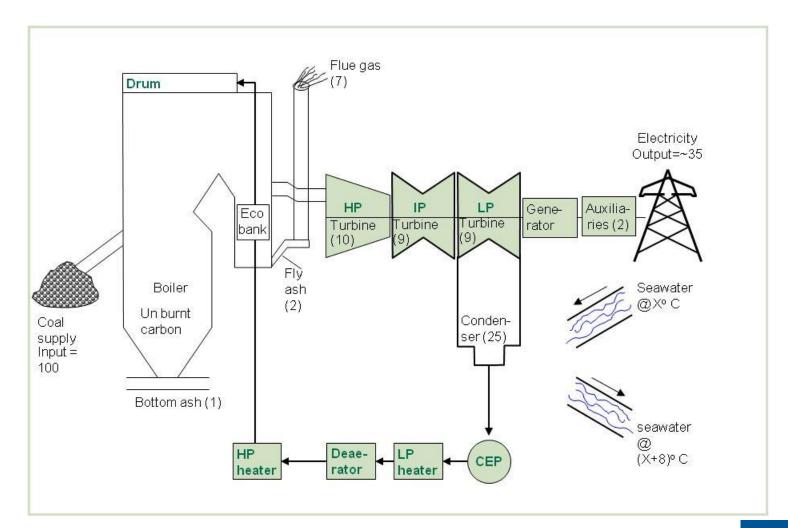
BUILDING A NORLD OF DIFFERENCE

IGCC COMPETITIVENESS AND DEVELOPMENT

Anthony F. Black April 5, 2012


TOPICS

Overview Current IGCC vs. PC Expected Advances SCPC IGCC


Questions?

COAL IGCC PROCESS DIAGRAM

SUPER CRITICAL PULVERIZED COAL (SCPC) DIAGRAM

4

=

CURRENT PROJECTS

• Duke Edwarsport

• Expected 2012 completion

• Kemper County

Placed on indefinite hold

Longview

- Recently completed
- Big Stone 2
 - Abandoned
- Holcomb 3
 - Courts requiring additional environmental review

SUPERCRITICAL PC VS. IGCC

	Supercritical PC	Coal IGCC
First Year of Commercial Operation	1957	1993
Commercial Plants Worldwide	500+	5
Water Usage – Wet Cooling	10X	7.5X
Water Usage – Dry Cooling	X	2.5X

COAL IGCC ENVIRONMENTAL BENEFITS

- Emissions Approaching Natural Gas-Fired Combined Cycle
- 98 99+% Sulfur Removal
- Lowest Cost Mercury Removal
- Highest CO₂ Recovery Potential
- Lower Water Use

7

CURRENT STATUS OF EMISSIONS

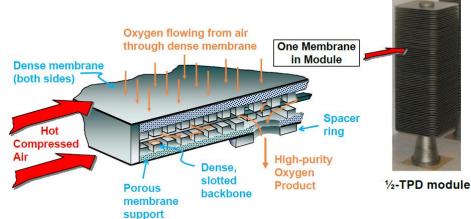
Location	NOx (Ib/MWh)	SOx (Ib/MWh)	CO (Ib/MWh)	PM10 (Ib/MWh)	CO2 (Ib/MWh)
Edwardsport, Indiana ⁽¹⁾	0.18	0.13	0.13	0.06	1,850 ⁽²⁾
Maidsville, West Virginia	0.56	0.83	0.96	0.16	1,850 ⁽²⁾

COMPARISON OF CURRENT IGCC AND SPC

- Efficiency approximately equal without carbon capture
- Capital cost significantly higher for IGCC
- Cost of energy about equal when carbon capture included

ADVANCES IN STEAM CONDITIONS

Above describes the Mainstream Pressure/ Main Steam Temperature/ Reheat Steam Temperature / Double Reheat Steam Temperature


Units: bar/°C/°C /°C (psi/°F/°F /°F)

Materials are key to increasing efficiency

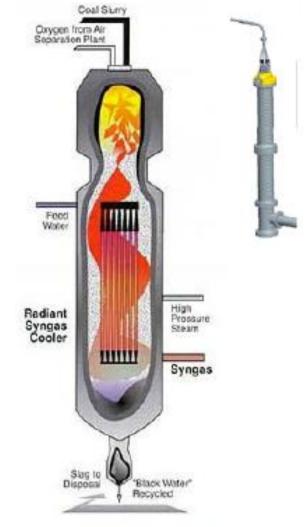
ION TRANSPORT MEMBRANES IMPACT

- Nearly 50 percent decrease in ASU auxiliary load
- Almost 35 percent cost reduction in ASU island (5 percent overall)
- Cost reduction partially offset by additional heat recovery equipment

 Likely fully commercial around 2020

WARM GAS CLEAN-UP IMPACT

- One to two percentage points increase in overall IGCC efficiency
- 6 percent decrease in overnight EPC capital cost



• Likely fully commercial around 2020

ADVANCE GASIFICATION IMPACT

- Efficiency improvement between 1 and 3 percentage points
- 25 to 50 percent cost reduction in the gasifier island (6 to 12 percent overall)
- Likely fully commercial around 2020

Source: DOE paper (2006)

RECAP

- Today IGCC is more costly than PC
- Drivers needed to make IGCC competitive
 - Carbon capture
 - Improved efficiency
 - Lower cost
- Key technology components likely commercially available around 2020.

Building a world of difference. Together

www.bv.com