MECONTROL Boiler Combustion Optimization

Advanced Instrumentation for Improved Plant Operation

Presented to: **McIlvaine Webinar** August 8, 2013

PROMECON

USA

"New" Instrumentation for Boiler Optimization

PROMECON

USA

(Air Monitor Corporation)

Extended spatial filter MECONTROL PSA

Based on evaluation of the shadows of a laser beam created by moving particles

Properties:

 Measuring range 30µm to 6mm

PROMECON

- Recording of particle velocity and particle size
- In-situ measurement on PF pipes
- Chord length measurement

PROMECON USA

Particle Size Analysis (PSA) Test Data: PS Reuter West, Berlin

Efficiency Optimization Principle

Minimize energy losses from unburned carbon & flue gas -- function of excess air levels

Key Functions

SAMPLING

Instrument must collect a representative sample

MEASUREMENT

Instrument must accurately measure the amount of unburned carbon in the sample

Sampling Approaches

- Extractive (remove ash from handling system to make measurement)
 Classical approach used for early instrument design
- In-situ (measurement made within ash handling system) New approach – providing significantly better reliability
 PROMECON APPROACH

Sampling of the Ash Flow

Ash and gas not uniform

Cross sectional coverage: 0.000005%

Fly ash concentration: 5g/m³

Cross sectional coverage: 2-8%

Fly ash concentration: 200,000 g/m³

Typical Fly Ash Loading Distribution

Duct Lateral Distance (Inches)

Duct Lateral Distance (Inches)

Duct Lateral Distance (Inches)

Typical Fly Ash LOI Distribution

Duct Lateral Distance (Inches)

Duct Lateral Distance (Inches)

Duct Lateral Distance (Inches)

USA

Measurement Approaches

- Microwave
 - Basis: Response to microwave radiation
 - Pros: Simple; Accurate; Infrequent calibration
 Insensitive to fuel type or blend
 Can be performed in-situ
 Multiple sampling points w/ one instrument
 - Cons: Higher initial cost (# sampling points?)

PROMECON USA

PROMECON UBC Measurement Principle

Dielectric constant of fly ash is a function of the carbon content. Measuring the shift of frequency (microwave) in a resonator (Δ f) enables the carbon content to be calculated.

 $\mathsf{UBC} = \mathsf{A} + \mathsf{B} \cdot \Delta \mathsf{f}$

A and B are the calibration coefficients

PROMECON USA

Typical Measurement Data Accuracy

Boiler/Mill Optimization w/ UBC Monitoring

we focus on your proces

MECONTROL UBC Design

Kanawha River UBC Data

Standard Deviation of UBC Measurements

> Channel 0: 0.17% Channel 1: 0.15% Channel 2: 0.28% Channel 3: 0.15% Channel 4: 0.10% Channel 5: 0.16% Channel 6: 0.25%

All Channels = 0.18%

Benefits to the Power Plant

- Accurate measurement of a very key combustion parameter (UBC)
- Optimization of mill/boiler performance
- Improvement of NOx, CO, O₂ and UBC (quantity and consistency)
- Operating cost savings by reduction of primary losses and increased fly ash sales

MECONTROL Boiler Combustion Optimization

Air/Flue Gas

Hot Gas Flow Measurement

PROMECON

USA

PROMECON USA

How accurate is your air flow measurement?

-Venturi measurements usually control dampers to a fixed set point. Therefore the venturi measurement indicates this set point during normal operation. Any deviations of inaccuracies therefore can not be observed from the measurement value itself, because it indicates the desired value. The damper curves usually do not allow the detection of deviations of the venturi measurement. But they often are not plausible(see picture)
 -Since the O₂ control loop usually corrects the deviations caused by a faulty air flow measurement, the problem can not therefore be detected by a flue gas O₂ monitor.

This problem causes loss in efficiency as well as unnecessary damper wear!!

MECONTROL Air/FG flow measurement

PROMECON

USA

-no measurement drift, reduced damper control error and wear
-accurate air distribution to each burner
-unaffected by dust and dirt in the gas stream
-no pressure drop at the measurement location

Air mass flow: 8,5 Kg/s

MECONTROL Air/FG Measurement Principle

MECONTROL Air/FG Overview

How do these problems affect the damper control?

A venturi measurement is highly non-repeatable when exposed to dust contamination in secondary air ducts. This leads to a wrong stoicheometry as well as to increased wear of the damper actuators. The problem does not become appearant on the venturi values themselves or the O2 values at the boiler outlet, but mainly on the dynamic behaviour of the dampers themselves.

Case Study: wall-fired boiler

Despite constant O2 values, combustion conditions vary from day to day!

Venturi measurements indicated the same air flow on both days.

However damper position showed large variations. This result is not plausible as the air ducts come off the same main duct which showed the same static pressure on both days.

Contact Information

PROMECON USA, Inc. 314 Collins Blvd. Orrville, OH 44667

Ph: 330-683-9074 Fax: 330-683-9082

www.promecon.us