APPA Webinars

CCS and the Many Challenges to Commercial Demonstration for Power Plants in Non-Oil/Gas Recovery Locations

Theresa Pugh Director of Environmental Services American Public Power Association

August 29, 2013

Commercial Demonstrations of CCS Requires Massive Infrastructure

For Non-Oil & Gas this Leaves Deep

Proximity of Fossil Plants to Deep Saline Aquifers Doesn't Always Matche Webinars

Newer Map of U.S. Coal Plants and Storage Sites

Source: Current State and Future Direction of Coal-Fired Power in the Eastern Interconnection, EISPC, June 2013 http://naruc.org/Grants/Documents/Final-ICF-Project-Report071213.pdf

Deep Saline Aquifer Locations and Lenient Seismic

Map of Possible CO₂ Pipeline Corridors for High CCS Case with Greater Use of EOR

Source: Current State and Future Direction of Coal-Fired Power in the Eastern Interconnection, EISPC, June 2013

http://naruc.org/Grants/Documents/Final-ICF-Project-Report071213.pdf

7

It has taken us 6 years to increase CO₂ pipeline from 3,000 miles to 6,000 miles. How to get to 66,000 by 2030?

Webinars

Virtually no 3D Seismic Done in Non-Oil & Gas Locations for Volumetric Estimates Yet APPA Webinars Subsurface space required for only 40% of the Carbon Dioxide from a 300 MW power plant for one year:

2,750 Acres

Source: J. Gledhill, Policy Navigation for APPA

Subsurface space required to sequester 40% of the Carbon Dioxide from approximately Nine 500 MW Plants over their 40-year lifetime:

2,580 square miles

Source: J. Gledhill, Policy Navigation for APPA

North America CO₂ Geologic Potential by State

	ICF CO2 EOR	ICF Depleted Oil	ICF Coal Beds	ICF Saline	ICF Lower-48	Lower-48
	Mid	Mid	Mid	Mid	Mid	Mid
	Volume	Volume	Volume	Volume	Volume	NATCARB
State or Area	Gtonne	Gtonne	Gtonne	Gtonne	Gtonne	Gtonne
ALABAMA	0.07	0.28	3.13	86.70	90.2	90.2
ARIZONA	0.00	0.01	0.00	0.85	0.9	0.9
ARKANSAS	0.08	0.18	2.58	31.87	34.7	34.7
ATLANTIC OFFSHORE	0.00	0.00	0.00	317.00	317.0	317.0
CA. ONSHORE	1.24	2.20	0.00	221.78	225.2	225.2
COLORADO	0.20	1.41	0.68	227.60	229.9	229.9
DELAWARE	0.00	0.00	0.00	0.05	0.1	0.1
FLORIDA	0.13	0.00	2.03	116.33	118.5	118.5
GEORGIA	0.00	0.00	0.05	11.85	11.9	11.9
IDAHO	0.00	0.00	0.00	0.39	0.4	0.4
ILLINOIS	0.10	0.00	2.16	61.91	64.2	64.2
INDIANA	0.02	0.00	0.14	49.91	50.1	50.1
IOWA	0.00	0.00	0.01	0.08	0.1	0.1
KANSAS	0.41	1.18	0.01	8.80	10.4	10.4
KENTUCKY	0.01	0.04	0.19	5.40	5.6	5.6
LA. OFFSHORE	1.46	9.61	0.00	2,133.07	2,144.1	2,144.1
LA ONSHORE	1.36	9.25	13.61	1,101.56	1,125.8	1,125.8
MARYLAND	0.00	0.00	0.00	2.96	3.0	3.0
MICHIGAN	0.08	0.69	0.00	36.56	37.3	37.3
MINNESOTA	0.00	0.00	0.00	0.00	0.0	0.0
MISSISSIPPI	0.13	0.43	8.96	335.20	344.7	344.7
MISSOURI	0.00	0.00	0.01	0.17	0.2	0.2
MONTANA	0.25	2.35	0.32	887.22	890.1	890.1
N. DAKOTA	0.32	4.09	0.60	111.65	116.7	116.7

	ICF	ICF	ICF	ICF	ICF	
	CO2 EOR	Depleted Oil	Coal Beds	Saline	Lower-48	Lower-48
	Mid	Mid	Mid	Mid	Mid	Mid
	Volume	Volume	Volume	Volume	Volume	NATCARB
State or Area	Gtonne	Gtonne	Gtonne	Gtonne	Gtonne	Gtonne
NEW MEXICO	0.90	6.45	0.19	236.89	244.4	244.4
NEBRASKA	0.02	0.01	0.00	49.85	49.9	49.9
NEVADA	0.00	0.00	0.00	0.00	0.0	0.0
NEW ENGLAND STS	0.00	0.00	0.00	0.00	0.0	0.0
NEW JERSEY	0.00	0.00	0.00	0.00	0.0	0.0
NEW YORK	0.00	0.92	0.00	4.26	5.2	5.2
N. CAROLINA	0.00	0.00	0.00	9.75	9.7	9.7
OHIO	0.00	10.06	0.13	9.94	20.1	20.1
OKLAHOMA	1.41	6.71	0.01	0.00	8.1	8.1
OREGON	0.00	0.00	0.00	52.24	52.2	52.2
PACIFIC OFFSHORE	0.00	0.20	2.30	108.00	110.5	110.5
PENNSYLVANIA	0.00	2.97	0.28	17.26	20.5	20.5
S. DAKOTA	0.00	0.19	0.00	86.69	86.9	86.9
S. CAROLINA	0.00	0.00	0.00	4.93	4.9	4.9
TENNESSEE	0.00	0.00	0.00	3.57	3.6	3.6
TEXAS ONSHORE	7.55	38.65	22.82	2,458.83	2,527.8	2,527.8
TX. OFFSHORE	0.00	5.53	0.00	1,064.93	1,070.5	1,070.5
UTAH	0.28	0.88	0.08	154.84	156.1	156.1
VIRGINIA	0.00	0.06	0.49	0.24	0.8	0.8
WASHINGTON	0.00	0.00	0.00	220.75	220.8	220.8
WESTVIRGINIA	0.00	1.83	0.41	11.21	13.4	13.4
WISCONSIN	0.00	0.00	0.00	0.00	0.0	0.0
WYOMING	0.42	1.88	12.00	644.82	659.1	659.1
Lower 48 Total	16.45	108.05	73.13	10,887.8	11,087.0	11,085.4
Offshore L-48	1.46	15.34	2.30	3,623.0	3,643.0	3,642.1

Source: Current State and Future Direction of Coal-Fired Power in the Eastern Interconnection, EISPC, June 2013 <u>http://naruc.org/Grants/Documents/Final-ICF-Project-Report071213.pdf</u>

CCS must work on Natural Gas Combined Cycle in Order to Be " Commercially Demonstrated"--Not Just for Coal Plants

• CO₂ is all the more difficult to capture from NGCC plant than coalfired power plant— so what is the Demonstrated Commercialization for NSPS for Natural Gas?

Interstate Pipeline Capacity Utilization if An Individual State Switched its Coal-Fired Generation to Natural Gas

Geographic Distribution of Underground Gas Storage Facilities

Other Legal & Commercial Obstacles to CCS

- Local laws restricting fracking or similar injection practices.
- Is CO₂ a hazardous waste for non-oil & gas uses under CERCLA/Superfund?
- Who owns the liability if parties go bankrupt?
- Who posts financial assurance for 100 or 1000 years?
- Not all states pool, unitize for CO₂ injection like oil & gas states.
- Will all states change laws to separate subsurface from surface so surface owners won't quash sequestration--NIMBY?
- What will banks & mortgage companies say about CO₂ sequestration under residential areas
- "Pore" space is a new concept for some state commercial laws

APPA CCS White Papers

- Retrofitting Carbon Capture Systems on Existing Coal-fired Power Plants
- Will Water Issues/Regulatory Capacity Allow or Prevent Geologic Sequestration for New Power Plants? A Review of the Underground Injection Control Program and Carbon Capture and Storage
- Carbon Capture and Storage From Coal-based Power Plants
- Parasitic Power for Carbon Capture
- Geologic CO₂ Issue Spotting and Analysis
- Carbon Capture and Sequestration Legal and Environmental Challenges Ahead (best paper for pragmatic issues)

Available online at:

http://www.publicpower.org/files/HTM/ccs.html

APPA Natural Gas Study (2010)

http://www.publicpower.org/files/ PDFs/ImplicationsOfGreaterReli anceOnNGforElectricityGenerati on.pdf

Recommended Reading-hot off the press

Current State and Future Direction of Coal-fired Power in the Eastern Interconnection

EASTERN INTERCONNECTION STATES' PLANNING COUNCIL

EISPC

Final Study Report June 2013

ICF Incorporated For EISPC and NARUC Funded by the U.S. Department of Energy http://naruc.org/Grants/Docume nts/Final-ICF-Project-Report071213.pdf

Theresa Pugh Director of Environmental Services APPA <u>tpugh@publicpower.org</u> (202) 467-2943

