ePTFE Membrane Filter Media for Dry FGD Systems

McIlvaine Hot Topics Hour
August 11, 2011

John R. Darrow/Terry Wanta
W. L. Gore & Associates, Inc.
Agenda

- Overview of W. L. Gore & Associates
- Introduction to ePTFE Membrane Filtration
- Filter Media for DSI & DFGD Systems
- ePTFE Membrane Filtration for DSI/DFGD
- Summary & Conclusions
Overview of W. L. Gore & Associates
Company Overview

- Founded in 1958
- Inventors of ePTFE membrane (patented in 1963)
- Associate-owned
- 10,000 associates
- 50 plants and sales locations globally
- Manufacturing in U.S., Germany, Scotland, Japan, and China
- Sales of approx $3 billion
- Ranked in the U.S. and Europe by Fortune Magazine as one of the top 100 company's to work for
Gore’s Four Divisions

- Electronic products
- Industrial products
- Medical products
- Fabrics
e-PTFE membrane filtration
What is Membrane Filter Media?

- ePTFE Membrane
- Fabric (Fiberglass or felt)
- Proprietary Lamination Process
- ePTFE Membrane Laminate
GORE® Filter Laminate
Filtering Mode (Surface vs. Depth)

Membrane Filtering Mode

- Particulate
- GAS STREAM
- Dust Cake
- GORE™ Membrane
- Scrim
- Clean Gas

Conventional Filtering Mode

- Particulate
- GAS STREAM
- Dust Cake
- Scrim

© 2011 W. L. Gore & Associates
Cleaning Mode (Surface vs. Depth)

Membrane Cleaning Mode

Conventional Cleaning Mode

Dust

© 2011 W. L. Gore & Associates
Filter Media for DSI or DFGD

- PPS (or PPS/PI blend) felt for PJFF
- Woven fiberglass for RGFF
- Acrylic felt for PJFF if continuous operating temperature <260 °F (126 °C)
- Polyester felt for PJFF (or woven PE for RGFF) may be an option for low temperature systems but it is subject to hydrolysis
- ePTFE Membrane on PPS felt or woven fiberglass (common in MSW plants; gaining acceptance with Electric Utilities)
DSI or DFGD Impact on Filter Media

• In a case of a DSI or spray dryer retrofit before an existing fabric filter the operating conditions will change
• Higher dust loading
 – May effect cleaning frequency
 – May effect ash handling system operation
• Ash characteristics change
 – Particle size distribution will change
 – Ash may become more cohesive (stickier) with higher moisture and lower temperature (especially true with lime based reagents in DFGD)
• All the above may impact the performance of the existing filter media
ePTFE Membrane Filtration for DSI/DFGD
Filtering Mode (Surface vs. Depth)

Membrane Filtering Mode

- Particulate
- GAS STREAM
- Dust Cake
- GORE™ Membrane

Clean Gas

Conventional Filtering Mode

- Particulate
- GAS STREAM
- Dust Cake
- Scrim

GORE™
Cleaning Mode (Surface vs. Depth)

Membrane Cleaning Mode

Conventional Cleaning Mode
Effect of DSI/DFGD on Filter Media

Parameter

Cleaning Frequency

Ideal Operation for PM_{min}

Ideal Operation for Minimum DP

PM Rate

Pressure Drop

Bag Life

Parameter PM_{max limit}
Membrane Advantages in DSI/DFGD

- Expanded PTFE membrane is chemically inert
- ePTFE membrane captures of fine aerosol PM on the surface
 - Co-benefit of capturing HAP metals
 - Protects the backing material from acidic PM (solid or liquid)
 - (Note: Membrane will not collect acid gas/vapor)
- Smooth, micro-porous surface provides superior release of sticky ash
- ePTFE membrane is less sensitive to changes in ash (size or chemistry)
- ePTFE allows more flexibility with cleaning system to adjust for changes in dust loading and ash characteristics
- ePTFE membrane can recover from process upsets, tube leaks, and start-up/shutdown problems
What Happens When Switching to ePTFE Membrane (From Conventional Filter Media)?

• Less residual dust cake
 – Lower DP after cleaning
 – Less frequent cleaning cycles to reach DP set point

• Solid PM will be reduced due to the high efficiency of ePTFE membrane
What About the Total PM Emissions?

• Solid PM will be reduced due to the efficiency of ePTFE membrane

• In a well documented case with DFGD
 – The DP across the system was considerably less with ePTFE membrane bags
 – Total PM decreased by nearly 50% compared to the conventional felt media
 – The solid PM decreased by 90% with membrane, but the condensable PM increased by nearly 50%
Why Did the Condensable PM Increase?

- The condensable PM was removed in the residual dust cake on the filter media (not the membrane)
 - You can reduce the condensable PM emissions by allowing the dust cake to build up

- Low residual dust cake with ePTFE membrane resulted in lower DP after cleaning
 - You can choose lower DP (with higher condensable PM)
 - You can choose the same DP (as conventional media) with similar condensable PM and longer bag life (by less frequent cleaning)
 - You may achieve the lower reagent consumption

- You can optimize the cleaning system for lower DP or lower condensable PM or lower reagent consumption (or a combination of the above)
Summary & Conclusions
Summary & Conclusions

- There are several filter media choices for DSI and DFGD depending on the gas design conditions.
- In cases of a DSI or DFGD retrofit upstream of an existing baghouse, the current filter media may not perform as well as in the original baghouse system.
- High performance filter media like ePTFE membrane may improve the system performance over the current filter media:
 - Reduced DP, longer bag life, and/or lower emissions
 - Higher capture of solid PM may provide some margin for Total PM (even if condensable PM increases)
 - The cleaning system may need to be optimized for the desired result.
- No normal filter media will capture gases or vapors.
Questions?

Contact information:
W. L. Gore & Associates, Inc.
John R Darrow
410-506-3316
jdarrow@wlgore.com

W. L. Gore & Associates, Inc.
Terry Wanta
(610) 524-4074
twanta@wlgore.com

INDUSTRIAL USE ONLY. Not for use in food, drug, cosmetic or medical device manufacturing, processing, or packaging operations.

© 2011 W. L. Gore & Associates