Post-Combustion Dry Reagent Injection For Acid Gas Mitigation Boilers and Cement Kilns

Discussion

- Trona Basics
- Mobile DRI Systems
- Results
 - 550 MW Utility Boiler
 - Iso kpph Industrial Boiler
 - 950 tpd Cement Kiln

$\frac{\text{Trona}}{\text{SO}_2}$ Stoic Ratio = 2.35 lb trona/lb SO₂

HCl Stoic Ratio = 2.07 lb trona/lb HCl

 $Na_2CO_3 \cdot NaHCO_3 \cdot 2H_2O$

Normalized Stoichiometric Ratio (NSR)

 $NSR = \begin{pmatrix} mass of trona injected \\ mass of acid gas entering system \end{pmatrix}$ $(stoichiometric mass of trona \\ unit mass of acid gas)$

Parameters Affecting Acid Gas Removal by DRI

- Sorbent particle size (trona as received 35 µm D50)
- Sorbent residence time in the flue gas stream
- Sorbent dispersion within the flue gas
- Particulate control device used
- Other acid gases (e.g., high SO2 concentration)

SO2 %RE and NSR are functions of these parameters

Mobile DRI Systems

- Modular setup in 1 2 days
- Milling on-site
- Silos
- Bulk Trailers
- Supersack systems

550 MW Utility Boiler w/ ESP - SO₂/HCl vs. NSR

SOLUTIONS COR

550 MW Coal w/ESP - Trona Feed Rate vs. HCl %RE

SO₂ and HCl Removal vs. Trona Injection Rate 150 kpph Boiler Biomass/SW with ESP

🔾 SO2 🔷 HCI

PM Emissions vs. Trona Injection Rate 150 kpph Steam Boiler with ESP

SOUTHERN AIR

150 kpph Boiler with ESP 35.00 0.060 \diamond 30.00 0.050 0.025 lb/MMBtu PM 25.00 0.040 PM Limit = 0.029 PM (Ib/MMBtu) HCI (ton/yr) 12.00 12.00 lb/MMBtu 0.030 HCl Limit = 10 tpy 0.020 10.00 2.5 tpy HCl 0.010 5.00 3 0.00 0.000 200 400 600 800 1000 0 1200 Trona Rate (lb/hr) ♦ HCI ■ FPM

PM Emissions and HCl Removal vs. Trona Injection Rate

SOLUTIONS CORP

SO₂ and HCl Removal vs. Trona Injection Rate 150 kpph Boiler Biomass/SW with ESP

⊖ SO2 <> HCl

SOUTHERN AIR SOLUTIONS CORP

SOUTHERN AIR

Milled Trona SO2 %RE vs. NSR for Cement Kiln with FFBH

Operating Unit	Kiln A	Kiln B	Kiln C
Sorbent	Trona	Trona	Trona
APCD	FFBH	FFBH	FFBH
Moisture Content at Stack (%vol)	33.5%	11.5%	16.0%
SO ₂ at Stack (ppmvd)	900	110	300
HCl at Stack (ppmvd)	15	15	15
Flue Gas Temperature (F)	350	310	310
Flue Gas Flow Rate (acfm)	160,000	220,000	150,000
Flue Gas Flow Rate (scfm)	104,691	151,429	103,247
Flue Gas Flow Rate (dscfm)	69,620	134,014	86,727
Clinker Produced (ton/day)	950	1,100	1,900
CKD Collection Rate (ton/hr)	5.0	3.5	6.0
CKD Recycled (%)	40%	100%	100%
SO ₂ (lb/hr)	625.0	147.0	259.5
HCl (lb/hr)	5.93	11.42	12.32
HCl (ppmvd @ 7% O2)	14.0	14.0	23.3
HCl - %RE required to Comply with PC MACT	79%	79%	87%

Milled Trona SO2 %RE vs. NSR for Cement Kiln with FFBH

-SO2 -HCl by M26A

Operating Unit	Kiln A	Kiln B	Kiln C
SO ₂ NSR Required	0.45	0.45	0.45
SO ₂ - Corresponding %RE	40%	40%	40%
TOTAL TRONA NEEDED (lb/hr)	672	176	297
Clinker Production (lb/hr)	79,167	91,667	158,333
CKD Recycled (%)	40%	100%	100%
CKD Rate Recycled (lb/hr)	4,000	7,000	12,000
Na ₂ SO ₄ Formed (lb/hr)	555	130	230
NaCl Formed (lb/hr)	10	18	20
Na from Trona Into CKD (lb/hr)	82	54	91
Na Recycled to Kiln (lb/hr)	33	54	91
Na In Clinker from Trona (%wt)	0.041%	0.059%	0.057%
Na ₂ O Equivalent in Clinker from Trona (%wt)	0.056%	0.079%	0.077%

Considerations

➢ Failed fly ash TCLP for selenium

- High Se bearing coal
- High trona injection rates
- Greatly reduced trona usage with baghouse
- > Plume coloration at high trona injection rates (NO2)
- Can boost native Hg removal
- Can increase Hg emissions

Inorganic CPM emissions increase (CPM expected to be regulated from EU boilers as PM2.5)

Land-filling considerations

Conclusions

> Trona has high reactivity with HCl and SOx compounds > Greatly reduced trona usage with baghouse and milling Trona can be a solution for EU MATS and Boiler MACT for HCL > For moderate to low SO₂ flue gases trona may be a solution for PC MACT compliance for kilns recirculating up to 100% of CKD > For high SO₂ flue gases trona may be a solution but may require wasting more CKD

