

PerNOxide NO_x Control Technology

URS and FMC Corporation McIlvaine Hot Topic February 23, 2012

Introduction

- Current and future regulations will require further NOx reductions from coal fleet
- SCR widely implemented on larger, higher-emitting plants where capital investment justified
- Low Nat Gas prices have reduced dispatch of smaller, higher cost plants
- Technology void exists for plants needing moderate (40-60%) NOx reductions with minimal capital investment
- FMC/URS are developing technology to meet need

NOx Technology Comparison

	SNCR	PerNOxide	SCR
Reagent	Urea	Peroxide	Ammonia
Nox Removal	15-40%	30-70%	75-90%
Capital Cost	Low	Low	High
Operating Cost	Low	Mid-High	Mid

PerNOxide offers moderate NOx reductions with low upfront capital investment

PerNOxide Injection Process

Note: Other possible capture options include SDA, CDS, CFB

PerNOxide Process Overview

- Two-Step Process
 - NO oxidation using hydrogen peroxide
 - Capture of the oxidized nitrogen species
- NO Oxidation
 - Hydrogen peroxide injected via dual-fluid nozzles
 - Injection between economizer & air preheater
 - Products include NO₂ & higher-order oxides
- Capture via Wet or Dry Scrubbing
 - NO₂ removal is critical for good performance

NO_x Capture Options

- NO_x Capture Enhancement
 - Wet lime / limestone / sodium scrubbers
 - Spray Dryer Absorbers (SDA) lime
 - Circulated Dry Scrubbers(CDS) lime
- NO_x Removal in Wet Scrubbers
 - Higher-order nitrogen oxides are very soluble with removal efficiencies > 95%
 - NO₂ is less soluble, but removal is enhanced by dissolved sulfite
 - Reaction products include nitrate, S-N species, and nitrogen gas

Technology Development

- Early Development (1996-2003)
 - Univ. Central Florida, EPA, NASA KSC, others
 - Treatment of NO_x from KSC boilers
 - Patent #6,676,912 NASA
- Later Development (2006-2010)
 - FMC Corporation exclusive licensee of IP
 - Pilot Low-Temp Testing (SDA)
 - Full-scale High-Temp Trials (proof of concept)
- Current Development (2011-2012)
 - URS/FMC Joint Commercialization Agreement
 - Laboratory R&D programs to optimize process
 - WFGD NOx Capture (URS)
 - NO Oxidation and Dry NOx Capture (EERC)
 - FMC additional patents pending peroxide activation

Technology Demonstration

- Full-Scale Demonstrations (FMC-2010)
 - 120 MW, E. Bit, No FGD
 - 440 MW, H-S Lignite, Limestone Inhibited-Ox FGD
 - 800 MW, PRB, Limestone Gypsum FGD
 - High NO oxidation achieved (50-80%)
 - Relatively poor NOx capture in WFGD
- Wet FGD Chemistry Lab Study (URS-2011)
 - NO_2 capture of >70% achieved
 - Key chemistry variables liq-sulfite, pH, buffer
- Dry FGD Pilot Study (EERC-2011)
 - Tested various fuels (NG, PRB, E. Bit, Lignite)
 - Up to 50% NOx capture achieved in SDA
- Pilot WFGD and Full-Scale Demo (URS/FMC-2012)

Technology Cost Comparison

Basis	Units	SNCR	PerNOxide	SCR
Capacity Treated	MW	400	400	400
Inlet NOx	lb/MMBtu	0.20	0.20	0.20
NOx Removal	%	20	50	80
NOx Emissions	lb/MMBtu	0.16	0.10	0.04
NOx Removed	TPY	526	1,316	2,102
Capacity Factor	%	75	75	75
Reagent		Urea	Peroxide	Ammonia
Reagent Molar Ratio	mol:mol NOx	0.20	1.50	0.80
Reagent Cost	\$/ton	\$500	\$1,000	\$600
Soda Ash Cost	\$/ton	\$0	\$300	
Catalyst Cost	\$/c.f.			\$150
SCR Catalyst Life	Yrs			3
Power Cost	\$/MW-hr	\$30	\$30	\$30
Annual Maint. Cost	% of Capital	1.0	1.0	1.0
Capital Cost	\$/kW	\$15	\$25	\$250
Capital Recovery Period	Yrs	20	20	20
Capital Discount Rate	%	8	8	8
Capital Recovery Factor	%	10	10	10

Annualized Costs

URS Cost Effectiveness Analysis

SNCR + PerNOxide offers 60-70% removal at <\$3000/ton NOx

Summary

- PerNOxide Technology is a 2-Step Process
 Oxidation of NO Capture in Wet/Dry FGD
- Capture of NO₂ is Critical
 - WFGD: mass-transfer, sulfite, pH important
 - Scrubber chemistry modification may be required
- PerNOxide is Low-Cost Alternative to SCR
 - Capital costs 1/10th that of SCR
 - Annualized costs 1/3rd that of SCR
 - Cost effectiveness (\$/ton) 1/2 that of SCR
 - Incremental SCR costs > \$10,000/ton NOx
 - Economics improved when combined with SNCR

For more information, contact:

Sterling Gray – URS sterling.gray @ urs.com 512-633-4975

Bob Crynack – FMC robert.crynack @ fmc.com 412-551-0925

