Static mixers for flue gas treatment applications

S. Hirschberg | 2011
Sulzer Chemtech: Leading in static mixing technology

- More than 50 applied patents
- More than 40 years experience
- More than 100,000 references worldwide

1970 Invention of Static Mixing Technology (SMV-Mixer)
1980 Introduction of SMX
1985 First SMR Reactor
1990 First PS-production plant
1995 CFD-simulation
2002 First CompaX
2004 First Contour
2006 First EPS-production plant
2007 Introduction Optifoam Extrusion
2008 First sold PLA production plant
2009 Introduction of SMX plus
2009 First EPS-production plant

Gas mixing | 2011 | slide 2
With Sulzer static mixing technology, you can …

- Increase NOx conversion of your SCR system
- Optimize the amount of catalyst necessary
- Reduce ammonia slip
- Achieve good DeNOx performance at all loads
- Homogenize temperature (hot bypass stream, filters, stack, …)
- Reduce operation expenses
- Increase catalyst life time
- Enhance filter efficiency
- Reduce service work

Temperature homogenization with Sulzer static mixers

Physical flow model with Sulzer Contour™ mixers

Dust homogenization with Sulzer SMV™ mixers
Sulzer products and services

- Static mixers for different installation sizes
 - Round ducts: Sulzer CompaX™, Sulzer SMI™, Sulzer SMV™
 - Rectangular ducts: Sulzer Contour™, Sulzer SMV™

- Ammonia Injection grids optimized for the static mixer to be used

- Wear protection coating for mixers and duct internals for operation with difficult dust

- CFD analysis and optimization of duct with AIG, mixers, turning vanes, flow rectifiers is part of the solution provided

- Physical flow modeling

- Development of static mixer configurations for equalization of dust distribution over the catalyst surface using CFD
 - For increase of catalyst life time
 - For prevention of fine dust clogging parts of the catalyst

- General analysis of large gas ducts for potential of pressure drop reductions as a service

- Performance guarantees
Applications of static mixing technology in thermal power stations

Sketch of a flue gas cleaning system with high dust SCR
Sulzer CompaX™ Mixer

- Ideal for dosing of small additive streams into turbulent main streams for round ducts
- Optimized geometry
- Works well for all mixing ratios between 1:10 down to 1:100000 and below
- No separate ammonia injection grid (AIG) necessary
- Homogeneous distribution after 3-5 diameters of the tube
- Low pressure drop

![Graph](image)

Measurement plane at L/D=5

- Results of experiments performed by BHR

<table>
<thead>
<tr>
<th>Mixing quality CoV [-]</th>
<th>Reynolds number [-]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>0</td>
</tr>
<tr>
<td>0.045</td>
<td>20000</td>
</tr>
<tr>
<td>0.04</td>
<td>40000</td>
</tr>
<tr>
<td>0.035</td>
<td>60000</td>
</tr>
<tr>
<td>0.04</td>
<td>80000</td>
</tr>
<tr>
<td>0.05</td>
<td>100000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Q/q=10000</th>
<th>Q/q=1000</th>
<th>Q/q=100</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>0.03</td>
<td>0.025</td>
</tr>
<tr>
<td>0.025</td>
<td>0.03</td>
<td>0.035</td>
</tr>
</tbody>
</table>
Sulzer SMI™ Mixer

- Intense mixing of streams down to homogeneities below 1% RMS if needed
- Admixing of small additive streams
- Simple optimized ammonia injection lance
- Very good homogeneity 5 – 8 tube diameters downstream of the mixer inlet
- Low surface area, widely open flow cross sections
- Low pressure drop
Sulzer SMV™ gas mixer

- Proven mixer technology
- Used in first large DeNOx applications realized in Germany in the 1980’s. Many recent US references
- Compact design
- Very short mixing length possible with specially adapted ammonia injection grid (AIG)
- Mixing process already starts within the mixer
- Low pressure drop
- Standard design includes 2 mixers
- Well suited for dust distribution
- Erosion protection by coating critical parts of the mixer as an option
Sulzer Contour™ mixer

- New mixer with optimized streamlined design (no flow detachment)
- Extremely low pressure drop
- Very good homogeneity possible (below 1% RMS if required)
- Very short mixing length possible
- Cross flow mixing over large distances
- Customizable to the mixing problem at hand
- Ideal for applications both with liquid atomized NH4OH or vaporized dosing
- Erosion protection through coating as an option
- Low weight
- On site assembly from a number of compact parts for installation in existing flue gas ducts
Erosion protection coating

- Thermal spray coating
- Arc wire based coating process
- General coating properties:
 - hard
 - ductile
 - good adhesion to substrate
- Properties of coating developed for this application
 - Hardness > 850 [HV 0,3]
 - Operating temperatures > 550°C
- Coating can be applied in the workshop (mostly automated) or on site
- Significantly increased service life time for coated surfaces even in severely abrasive environments
References since the year 2000

<table>
<thead>
<tr>
<th>Plant</th>
<th>Engineer</th>
<th>Nr. of Reactors</th>
<th>Year</th>
<th>Plant</th>
<th>Engineer</th>
<th>Nr. of Reactors</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>AES Cayuga Unit 1</td>
<td>Foster Wheeler</td>
<td>1</td>
<td>2000</td>
<td>TECO Big Bend 3</td>
<td>Sargent & Lundy</td>
<td>1</td>
<td>2005</td>
</tr>
<tr>
<td>W.A. Parish Unit 5</td>
<td>Sargent & Lundy</td>
<td>2</td>
<td>2001</td>
<td>Progress Energy Asheville 1 & 2</td>
<td>Worley Parsons</td>
<td>1</td>
<td>2005</td>
</tr>
<tr>
<td>W.A. Parish Unit 6</td>
<td>Sargent & Lundy</td>
<td>2</td>
<td>2001</td>
<td>Dallman 4</td>
<td>Foster Wheeler</td>
<td>1</td>
<td>2006</td>
</tr>
<tr>
<td>W.A. Parish Unit 7</td>
<td>Sargent & Lundy</td>
<td>2</td>
<td>2001</td>
<td>Elm Road</td>
<td>Hitachi</td>
<td>4</td>
<td>2006</td>
</tr>
<tr>
<td>W.A. Parish Unit 6</td>
<td>Sargent & Lundy</td>
<td>2</td>
<td>2001</td>
<td>TECO Big Bend 1 and 2</td>
<td>Sargent & Lundy</td>
<td>2</td>
<td>2006</td>
</tr>
<tr>
<td>CP&L Roxboro 1</td>
<td>Foster Wheeler</td>
<td>1</td>
<td>2002</td>
<td>SCE & G Cope</td>
<td>Alstom</td>
<td>1</td>
<td>2006</td>
</tr>
<tr>
<td>CP&L Roxboro 2</td>
<td>Foster Wheeler</td>
<td>2</td>
<td>2002</td>
<td>Empire Asbury</td>
<td>Alstom</td>
<td>1</td>
<td>2006</td>
</tr>
<tr>
<td>CP&L Mayo Unit 1</td>
<td>Foster Wheeler</td>
<td>2</td>
<td>2002</td>
<td>Springfield 4</td>
<td>Foster Wheeler</td>
<td>1</td>
<td>2006</td>
</tr>
<tr>
<td>Owensboro Elmer Smith Unit 1</td>
<td>Sargent & Lundy</td>
<td>1</td>
<td>2002</td>
<td>Trinity County</td>
<td>Hitachi</td>
<td>2</td>
<td>2006</td>
</tr>
<tr>
<td>Exelon Mt. Creek Unit 3</td>
<td>Foster Wheeler</td>
<td>1</td>
<td>2002</td>
<td>Seminole</td>
<td>Hitachi</td>
<td>4</td>
<td>2006</td>
</tr>
<tr>
<td>Marion Unit 4 - SIPCO</td>
<td>Sargent & Lundy</td>
<td>1</td>
<td>2001</td>
<td>Boswell</td>
<td>Hitachi</td>
<td>1</td>
<td>2007</td>
</tr>
<tr>
<td>Consumers Karn 1</td>
<td>Babcock & Wilcox</td>
<td>2</td>
<td>2001</td>
<td>McIntosh 3</td>
<td>Halcor Topsco</td>
<td>2</td>
<td>2007</td>
</tr>
<tr>
<td>Consumers Karn 2</td>
<td>Babcock & Wilcox</td>
<td>2</td>
<td>2001</td>
<td>Longview</td>
<td>Foster Wheeler</td>
<td>2</td>
<td>2007</td>
</tr>
<tr>
<td>Consumers Campbell Unit 2</td>
<td>Babcock & Wilcox</td>
<td>2</td>
<td>2001</td>
<td>Hudson</td>
<td>Hitachi</td>
<td>2</td>
<td>2007</td>
</tr>
<tr>
<td>AES Petersburg Unit 2</td>
<td>Foster Wheeler</td>
<td>2</td>
<td>2003</td>
<td>Duke Cliffsida</td>
<td>Hitachi</td>
<td>2</td>
<td>2007</td>
</tr>
<tr>
<td>AES Petersburg Unit 3</td>
<td>Foster Wheeler</td>
<td>2</td>
<td>2003</td>
<td>Mannheim</td>
<td>GKM</td>
<td>1</td>
<td>2008</td>
</tr>
<tr>
<td>Muskingum Unit 5</td>
<td>Foster Wheeler</td>
<td>2</td>
<td>2003</td>
<td>Puente Nuevo</td>
<td>Idecro</td>
<td>1</td>
<td>2008</td>
</tr>
<tr>
<td>Consumers Campbell Unit 3</td>
<td>Foster Wheeler</td>
<td>2</td>
<td>2003</td>
<td>Mannheim</td>
<td>GKM</td>
<td>1</td>
<td>2009</td>
</tr>
<tr>
<td>Southern Company Gaston Unit 5</td>
<td>Haldor Topsco</td>
<td>1</td>
<td>2004</td>
<td>BL England</td>
<td>Cornetech</td>
<td>1</td>
<td>2009</td>
</tr>
<tr>
<td>Springerville 3</td>
<td>Foster Wheeler</td>
<td>1</td>
<td>2004</td>
<td>Martin Lake</td>
<td>Hitachi</td>
<td>4</td>
<td>2010</td>
</tr>
<tr>
<td>AES Deepwater</td>
<td>Foster Wheeler</td>
<td>1</td>
<td>2005</td>
<td>Mannheim</td>
<td>GKM</td>
<td>1</td>
<td>2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sostanj</td>
<td>Alstom</td>
<td>1</td>
<td>2011</td>
</tr>
</tbody>
</table>