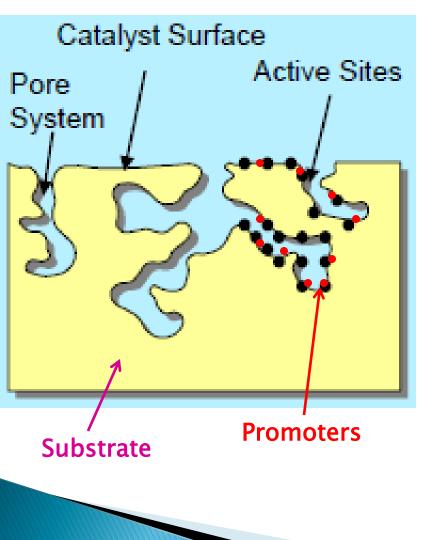


Selecting SCR Catalysts for Integrated Pollution Control

W. Scott Hinton, Ph.D., P.E. W.S. HINTON & Assoc. 1612 Smugglers Cove Circle Gulf Breeze, FL 32563 850–936–0037 shinton@wshinton.com www.wshinton.com

Parameters Affected by Catalyst Selection

- NOx Removal
- Ammonia Slip
- Pressure Loss
- Catalyst Life
- SO3 Levels
- APH Fouling
- ESP Collection Efficiency
- Mercury Oxidation and Capture
- Scrubber Operation


Relative Effects Matrix

Parameter Adjustment	Relative Effect									
	DeNOx	SO3	Slip	Pressure Drop	Catalyst Volume	Catalyst Life	APH Fouling	Mercury Oxidation	ESP Efficiency	Scrubber/ Emissions Perf.
Increased DeNOx w/ constant volume and slip (change formulation)	t	1	-	_	_	-	t	ſ	- †	-1
Increased Life w/ constant slip and deNOx (volume increase w/ no formulation change)	_	1	-	t	Ť	Ť	t	ſ	- †	-↓
Decreased Slip w/ no catalyst change – constant DeNOx, and SO3	_	Ι	↓	_	-	↓	Ļ	- ↑	-↓	- 1
Decreased SO3 with formulation change – constant deNOx, slip, and life	_	Ļ	-	1	1	_	Ļ	Ļ	-↓	-1
Catalyst Design Improvements	1	Ļ	Ļ	Ļ	Ļ	1	Ļ	1	_	_

Catalyst Design Parameters

- Chemistry
- Microscopic Physical Parameters
- Macroscopic Physical Parameters

Catalyst Chemistry

The catalyst formulation refers to the catalyst chemistry– i.e. the chemicals that are present as active catalytic components, promoters, and substrates.

Active catalytic components: "active sites" principally of vanadium (V2O5), but sometimes titania (TiO2) under some conditions.

Promoters: work along with the active catalytic components improving the reaction and limiting side reactions (SO2 conversion), often molybdenum, and tungsten

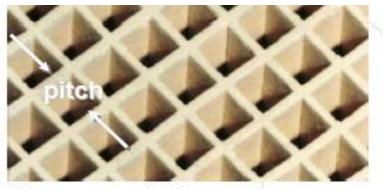
Substrate: Provides the micro and physical surface to which the catalysts and promoters attach, and provides the macro porosity and physical strength of the catalyst matrix – primarily titania (TiO2)

Microscopic Physical Design

Catalyst Surface Active Sites Pore System Micro-Pores **Macro-Pores**

The microscopic physical design refers to the pore volume, pore size distribution, and total surface area of the catalyst (BET).

Macro-pores: relatively large pores providing a major "highway" for the diffusion of reactants and products


Micro-pores: relatively small pores providing a "local" network of paths and chambers giving high surface area

> Manipulating the pore size distribution greatly affects the catalyst's performance, especially in terms of SO2 oxidation.

Macroscopic Physical Design

Plate-Type Structure

Honeycomb Structure

Physical Geometry: plate, honeycomb, or corrugated provides the pitch, geometric surface area, open area, and flow path length and dimension – affects overall strength, fouling resistance, etc.

Wall thickness: very important to physical strength and reaction mechanisms – thinner walls generally improve SO2 conversion, but may impact strength parameters.

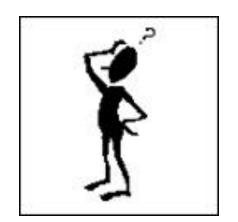
Substrate selection: impacts "hardness" of catalyst – resistance to abrasion, cracking, delamination, etc., as well as the ability to create the desired pore structure.

TRENDS AFFECTING CATALYST DESIGN AND SELECTION

Fuel Switching to Higher Sulfur Coal – increases focus on lowering SO3 to avoid APH fouling and wet stack emissions – need for lower SO2 conversion catalysts without a trade-off.

Mercury Control Added to the Mix – Improved mercury oxidation capability of the catalysts needed, as well as improved understanding of the mechanism – guarantees are being demanded.

PRB Coal Combustion – Poor mercury oxidation due to low halogens – strong incentive for new high-oxidation catalysts for PRB flue gases.


Wet Scrubber Installations – Important to limit SO3 to avoid plume issues, especially in light of potential fuel switching.

Catalyst Regeneration – adds an additional variable to the overall catalyst selection process – potential cost savings.

Catalyst Manufacturer "Hot Topics"

- Improve and better predict mercury oxidation without adversely affecting other parameters
- Continue to improve SO2 conversion without affecting deNOx capability
- Reduce volume improve activity
- Improve poisoning resistance
- Maintain physical strength in light of other changes
- Control costs in light of overall market pressure

QUESTIONS?

