McIlvaine Hot Topic Hour
Catalyst Selection for NOx and Other Gases
November 29th, 2012

Enhanced Mercury Control by Managing SCR Systems for Mercury and NOx

Scott Hinton, Ph.D., P.E.
W.S. HINTON & ASSOCIATES
1612 Smugglers Cove Circle
Gulf Breeze, FL 32564
Tel: 850-936-0037
shinton@wshinton.com
GENERAL PRECAUTIONS!

SCR Focus: The focus of the presentation is SCR mercury oxidation. However, many downstream factors will influence mercury speciation and capture. Avoid making the assumption that a speciation change at the SCR will have the same direct quantitative effect on mercury capture at the stack. The system must be treated in an integrated fashion.

Use Data as Examples Only: Much of the data presented are associated with pilot facilities. These data may not translate directly to full-scale systems, especially in terms of the absolute values for halogens and mercury oxidation. In other words, the scales may be shifted!

Mercury Oxidation is Site Specific! Data from one facility may not translate directly to another facility, even if facilities appear to be very similar.
Factors Affecting SCR Mercury Oxidation

- **Fuel Composition** (mercury and halogen Levels)
- **Supplemental Halogens** (chlorine or bromine addition)
- **Catalyst Design** (pitch, formulation, etc.)
- **Volume/Potential**
- **Catalyst Age**
- **Temperature**
- **Flow Rate**
- **Ammonia**
Fuel Composition – Mercury Levels
Fuel Composition – Chlorine Levels
Bromine and Chlorine Inter-Relationship

Coals low in Chlorine will also generally be low in Bromine

Native Bromine (ppmw, dry) vs. Native Chlorine (ppmw, dry)
Example Effect of Chlorine on SCR Hg Oxidation
Bromine Addition with SCR-Wet Scrubber

MRC Data - low chlorine eastern bituminous coal

Caution! Example only – effects may be significantly shifted in the field.
SCR Outlet Oxidized Mercury vs. Temperature

lower temperatures favor oxidized mercury

Based on MRC data
4 catalysts
Effect of Ammonia: Suppression of Hg Oxidation
halogens can help to mitigate the effect

Caution! Example only – halogen effects may be significantly shifted in the field.
Effect of Ammonia: Speciation as a Function of Catalyst Layer

MRC data for single catalyst, halogen limited environment, 3 layers total, interlayer after first 2 layers.
Effect of Ammonia: Speciation as a Function of Catalyst Layers

MRC data as in previous slide, available elemental Hg computed as average of layer inlet and outlet elemental Hg.
GENERAL OPERATING GUIDELINES TO MAXIMIZE MERCURY OXIDATION AND MINIMIZE EMISSIONS

- Avoid High-Mercury in Fuel
- High Halogens
 (through fuel purchasing, blending, or supplementation)
- Lower Temperatures
- Lower Flow Rates/Low Space Velocity
- Minimize the Ammonia Profile
 (through good SCR maintenance, AIG tuning, cleanliness, distributions, etc.)
TWO CATALYST MANAGEMENT STRATEGIES TO IMPROVE MERCURY OXIDATION AND MAINTAIN DENOX

Strategy A – Aggressively Maximizes Mercury Oxidation

Strategy B – Modest Approach to Improve Mercury Oxidation
Strategy A

• Most Aggressive Strategy
• Manages Upper Catalyst Layers for DeNOx
• Manages Final Catalyst Layer for Mercury Oxidation
• Insures that Entire Final Catalyst Layer Operates with Very Low Slip (< 2 ppmv normally)
• Results in One Extra Layer Always Being Present in Reactor
• Fine Tuning Parameters: Frequency of Final Layer Replacement, Use of Advanced Catalyst, Allowable Slip Entering Final Layer, Halogen Injection Level (if used)
• Costs: Full Layer of Additional Catalyst, Pressure Drop, Maintenance, Sootblowing/Horn Provisions, More Frequent Management Events
STRATEGY A – Manages Reactor in Two Parts

4-Layer Reactor Design

<table>
<thead>
<tr>
<th>Layer 1</th>
<th>High deNOx – Very Limited Hg Oxidation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer 2</td>
<td>Moderate deNOx – Limited Hg Oxidation</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Layer 3</td>
<td>Low deNOx – Moderate Hg Oxidation</td>
</tr>
<tr>
<td></td>
<td>NH₃ Slip = 2-5 ppmv</td>
</tr>
<tr>
<td>Layer 4</td>
<td>~No deNOx – High Hg Oxidation</td>
</tr>
<tr>
<td></td>
<td>NH₃ slip ≈ 0, Hg Oxid. ≈ 90%</td>
</tr>
</tbody>
</table>

3-Layer Reactor Design

<table>
<thead>
<tr>
<th>Layer 1</th>
<th>High deNOx – Very Limited Hg Oxidation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer 2</td>
<td>Moderate/Low deNOx - Limited Hg Oxidation</td>
</tr>
<tr>
<td></td>
<td>NH₃ Slip = 2-5 ppmv</td>
</tr>
<tr>
<td>Layer 3</td>
<td>~No deNOx – High Hg Oxidation</td>
</tr>
<tr>
<td></td>
<td>NH₃ slip ≈ 0, Hg Oxid. ≈ 90%</td>
</tr>
</tbody>
</table>

Key

- DeNOx Layers
- Mercury Oxidation Layers
STRATEGY A – CATALYST MANAGEMENT PLAN

Min. Slip Allowed at Inlet to Hg Oxidation Layer

Minimum Potential Required for deNOx Section

Minimum Potential Required for Hg Oxidation Layer

Potential
Upper Layers

Potential
Final Layer

Time
Strategy B

• Moderate Strategy to Improve Mercury Oxidation

• Manages Reactor as a Whole, Following Typical Management Strategy in General Approach

• Relies on “Excess Potential” to Insure that Some Portion of Catalyst Operates at Very Low Slip Over the Life of the Installation.

• Results in More Frequent Catalyst Replacements, or Requires More Potential Per Layer (via deeper beds, tighter pitch, or possibly more active catalyst)

• Caution: Do Not Allow Excess Potential to be an Excuse for Sloppy Operation and Maintenance of the SCR System

• Fine Tuning Parameters: Required Excess Potential, Use of Advanced Catalyst, Halogen Injection Level (if used)

• Costs: additional catalyst, more frequent management events
Strategy B – Catalyst Management Plan

- Minimum Potential According to Original Design
- Minimum Potential According to Strategy B
- Excess Potential
Management Strategy Selection: Decision Tree

- **Does the facility consistently meet the required mercury emissions limits?**
 - Yes: Are there any expected changes that will raise the current emissions?
 - No: **No Action Needed**
 - Yes: Are current emissions very near regulatory limits?
 - No: Will halogen injection be used?
 - Yes: Can halogens be injected at high rates without concern for operations or economics?
 - No: Will sorbent injection be used?
 - Yes: Will sorbent injection easily accomplish required removal economically?
 - No: **Probably Use Strategy B**
 - Yes: **Probably Use Strategy A**
 - No: **Probably Use Strategy A**
 - No: **Probably Use Strategy A**
 - Yes: **Probably Use Strategy B**
 - No: **Probably Use Strategy A**
<table>
<thead>
<tr>
<th>Strategy</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggressiveness</td>
<td>High</td>
<td>Moderate</td>
</tr>
<tr>
<td>General Application</td>
<td>Facilities that have very limited mercury oxidation under normal operation</td>
<td>Facilities that routinely achieve, or nearly achieve, the required mercury removal under normal operation</td>
</tr>
<tr>
<td>Halogen Level</td>
<td>Often low native halogen coals (PRB and domestic/foreign low-chlorine coals), with halogen supplementation required/other facilities for which demand for SCR mercury oxidation is high</td>
<td>Usually moderate to high-halogen coals where no halogen supplementation is required/other facilities for which demand for SCR mercury oxidation is low or moderate</td>
</tr>
<tr>
<td>Approach</td>
<td>Manage final catalyst layer as a mercury oxidation catalyst with very low ammonia – upper catalyst layers managed for deNOx</td>
<td>Manage entire reactor as a whole using excess reactor potential to insure adequate mercury oxidation</td>
</tr>
</tbody>
</table>
| **Variables (fine tuning parameters)** | 1) Allowable slip entering the final catalyst layer
2) Allowable deactivation of final layer prior to replacement
3) Halogen and/or sorbent injection rate, if utilized
4) Use of Advanced Catalyst | 1) Amount of excess potential required to meet the desired margin in mercury removal
2) Halogen and/or sorbent injection rate, if utilized
3) Use of Advanced Catalyst |
Economic Considerations of Catalyst Management for Mercury Control

<table>
<thead>
<tr>
<th>Category</th>
<th>Costs</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Strategy A</td>
<td>Strategy B</td>
</tr>
<tr>
<td>Fixed Capital</td>
<td>Cost of full catalyst layer, possibly cost of cleaning system and instrumentation for additional layer</td>
<td>Cost of additional catalyst potential</td>
</tr>
<tr>
<td>Variable</td>
<td>Pressure drop associated with additional catalyst</td>
<td>Pressure drop associated with additional catalyst</td>
</tr>
<tr>
<td>Maintenance</td>
<td>General maintenance catalyst replacement events associated with final layer</td>
<td>More frequent catalyst replacement events</td>
</tr>
</tbody>
</table>
DATA SHORTFALLS

• Quantitative speciation benefit from the management strategies as a function of fuel and operating conditions.

• Direct quantitative effect on emissions due to SCR oxidation change, as a function of operating conditions.

• Advantages of advanced catalyst over conventional catalyst as a function of operating conditions, and location in reactor.
ADVANCED VERSUS CONVENTIONAL CATALYST

- Advanced catalyst is designed to offer higher mercury oxidation while maintaining deNOx and SO2 conversion.
- Some price premium is expected.
- Both catalyst management plans can utilize advanced catalyst.
- Advanced catalyst probably most beneficial in last layer.
- Most aggressive strategy is to use Strategy A with advanced catalyst in entire reactor, or alternately only the last layer would use advanced catalyst.
- Currently the differential mercury oxidation between advanced catalyst and conventional catalyst is not known independently.
- Cost analyses will depend on the above and the price differential.