ZoloBOSS: Laser-based Sensor for Real-time Combustion Optimization

Better Measurements, Better Results

Balanced Combustion -> Optimized Combustion

- Balanced combustion (Temp, O₂ & CO) is better combustion
- Balanced combustion permits safe operation at lower excess O₂
- Lower excess $O_2 \rightarrow$ increases efficiency (heat rate)
- Lower excess $O_2 \rightarrow$ lowers NOx rates
- Subject to constraints on CO and slagging

Balancing: The Problem is Local

- Natural process variations will lead to local imbalances in furnace
 - "The right amount of ingredients don't equal a good cake"
 - Proper air/fuel at burner is important but may not mean optimized combustion

• 80/20 rule:

- 80% of emission/slag, 20% of furnace
- CO Increases exponentially, Slag/fouling hot spots, NOx with high O2

Problem gets worse as excess O₂ is reduced

The Solution: The ZoloBOSS System

- \$ Uses laser light absorption to measure Temp, O₂, CO & H₂O
- Paths measure average concentration across furnace
- Real-time measurement directly in the furnace
- Multiple paths generate two-dimensional images or profiles
- § Output used to balance and optimize combustion

Balancing: Optimization Concept Vacation

Pro : Efficiency, NOx Con : Slag, CO Pro: Slag, CO Con: Efficiency, NOx Pro: Efficiency, Slag, NOx, CO Con : Effort to Balance

Typical ZoloBOSS Layout

Key Features of ZoloBOSS

- Real-time, in-situ measurements:
 - Temperature, H_20 , CO and O_2
 - Path average measurement for each path
- Spatial profiles and furnace balancing information
- Designed for Ultra-harsh Environments
 - Non-intrusive (nothing installed within furnace, nothing to plug)
 - Fiber coupled key electronics are located in protected area
 - Auto-alignment keeps lasers aligned
 - Port rodder system to keep openings clear of slag
 - No cooling of heads required
- No field calibration required
- Low maintenance:
 - Periodic window cleaning is required
 - Work can be performed while boiler is operating

Typical ZoloBOSS Layout

\$ 15 path modular system\$ Configuration based on Plant needs

Plant supplies:

- **§** Membrane wall penetrations
 - **§** Short outage & low cost
- **§** Conduits for fiber & ethernet
- § 120V Power @ <3KW
 </p>
- Instrument air @ ~90psig (6.2 bar)

Slotted Opening in Membrane

Port Rodder

SensAlign[™] Head

Typical ZoloBOSS Layouts

The ZoloBOSS Interface

- SoloBOSS data transmitted to historian via OPC or Modbus
- Interfaces available to operators & engineers
 - For a constituent
 For each elevation and constituent
 - Frending data available for specific paths and constituents
 - BalanceApp targeted for operators
- Solution Control System and/or Combustion Optimizer

Operator BalanceApp Interface

Center Combustion: Why?

Centered Combustion = Balanced combustion

- Goal = Centered Combustion (fireball)
 - Fireball center is a compass to direct combustion manipulations

Summary: Combustion Optimization

Measure

- Plant data
- Furnace data

Develop Relationships

Results:

Improve Heat Rate
 Lower Emissions: NOx & CO₂
 Minimize Slag
 Increase Fuel Flexibility

Correlate

- Parametric Tests
- Model-based
- Rules-based
- Neural-net based

Manual Balancing

- Operator control
- Combustion Optimizer

Optimize

- Manipulate Air/Fuel bias
- Reduce Excess O₂

Operator control
 Combustion Optimizer

Center/Balance

- Balance/Center Temperature
- Balance O₂
- Balance CO

Questions?

Please visit our website at www.zolotech.comThank you for your time and your interest!

Better Measurements, Better Results

Sensor Comparison

	Zolo <i>BOSS</i>	Extractive Sensors
Measurement Location	Direct in-furnace measurements (<3000F)	Back-pass: (<1500F)
	Better correlation with combustion settings	Subject to additional mixing and dilution
	Combustion not complete; measurements	Combustion complete; not sensitive to small
	more sensitive to small operational changes	changes in operational settings
	 Measures in-situ – no impact of air leakage 	Impacted by air-in leakage in penthouse
Constituents	 Simultaneous Temp, H₂O, O₂ & CO 	• O_2/CO only
		Optional temperature but not useful
Path Average	 Measures larger portion of furnace cross- 	Data collected at specific "points" only
vorsus Doint	section along entire path of laser	• No localized areas of CO/O ₂ in between "points"
versus Point	 Captures impact of local "pockets" of 	Large number of "points" not economic
Measurement	T/CO/O ₂	
	 Maintain FEGT below ash fusion temps 	No temperature info in furnace
Slag Control	 Monitor Temp/CO/O₂ in SH/RH 	
	Integrate FEGT into intelligent soot blowing	
Water wall	Paths located near side walls can monitor for	No relevant data to monitor for corrosion
Corrosion	corrosive environments: low O ₂ + high CO.	
Impact on	 Identify local areas of high O₂ & temperature 	Not useful for localized NOx
NOx reduction		
Maintenance	 Nothing installed inside harsh furnace 	• Extraction grid installed inside convective pass
	 Maintenance during boiler operation 	Maintenance requires unit shut down
	 No calibration required 	Prone to failure at high (1500F) temps
		Aspirator nozzles frequently plug
		Regular calibration required for good accuracy