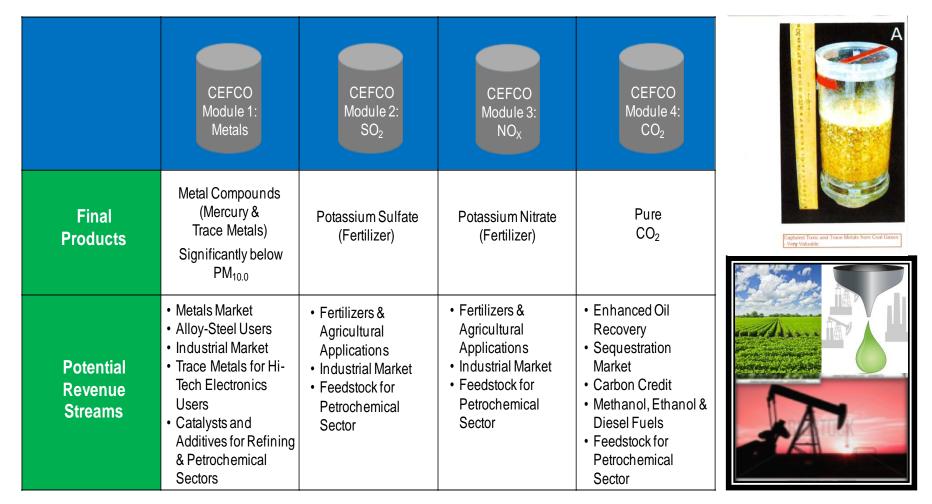
CEFCO GLOBAL CLEAN ENERGY, LLC

McIlvaine Hot Topic Hour

High-Value Beneficial By-Products from Coal Combustion and Gasification at Ultra-Low Cost Inputs through Innovative Technology

Robert E. Tang, CEO and Co-Inventor

July 26, 2012


Five Major Groups of Beneficial Products from Capture and Conversion

- Trace Metals and Fine Particulates
 - Very valuable when captured and neutralized for Industrial Use by Metal Refiners, Steel Makers and Electronic Component Makers
- $_{\circ}$ Sulfur (SO₃, SO₂, SO and H₂S)
 - Conversion into High Value Potassium Sulfate Fertilizer
- NO, NO2 and NOx
 - > Conversion into High Value Potassium Nitrate Fertilizer
- CO, CO₂ and THC (Complex Hydrocarbons)
 - CO2 can be captured as "pure CO2" via Bicarbonate for EOR, CCS, and Conversion into High Value Plastics and Liquid Fuels
- Residual Gases, such as N₂, O₂, and the Inerts-Nobles (Argon, Xenon, etc.)

Profit from Valuable End-Product Sale

Sequenced modules selectively capture distinct and Valuable Products from Pollutants.

CEFCO's Innovative Solution

CO₂ Capture + All-Pollutant Capture = Regulatory Compliance + Renewable & Sustainable Technology + Recovering CAPEX and OPEX

- Use Ewan's shockwave "free-jet collision scrubbing" (recognized by EPA/DOE) to capture CO₂ and all pollutants
- Cooper Process to <u>convert CO₂</u> and all "captured pollutants" with Appropriate <u>Reagents</u> into recovered, segregated, valuable, and <u>sellable End-Products</u>
- Accomplished using Supersonic Shockwave Reaction Mechanism under USPTO Patent issued on November 30, 2010 under: <u>US 7,842,264B2</u>
- CEFCO Users:
 - 1) Comply with all EPA's MACT and NESHAPs Requirements
 - 2) Benefit of selling End-Products ≈ no longer "cost-center" ↔ recover CAPEX+
 - 3) Providing pure CO₂ gas to Ultimate Users (via Capture in BiCarbonate Solid/Liquid)

Ewan Technology: EPA MACT Compliant

	Date Reference No. Report Title April 1, 1974 EPA-650/2-74-028 Steam-Hydro Air Clea			Emissions Targets 0.03 micron to 5.0 micron		Description of Tests Steam-Hydro Patent		Performance Conclusion "90.0% at 0.01 micron		•	EPA publi	
	P 7 -	(Dale L. Harmon, EPA-NERC- RTP)			(EPA Method 5)		invented by T.K. Ewan sold and assigned to Lone Star Steel (Div. of US Steel)		99.9% at 0.5 micron and 99.99% at 1.0 micron"			Phase I M
	Oct. 1976 NCASI — Special RTP Sept. 1977 EPA- 600/2-77 -193 under Dennis C. Drehmel, EPA, Research Triangle Park		Kraft Recovery of TRS Emissions		Total Reduced Sulfur, H ₂ S, CO ₂		" near instantaneous ' tremendous surface area for gas-liquid contact 50 x 10 ⁻³ sec."		"TRS emissions were reduced to less than 2 ppm during total run", "quite successful it is recommended to test for SO ₂			for Hazar
			EP	EPA/600/13 Code		Contract 68-02-2190: Particulates, H ₂ S, SO ₂				removal also" " well below the 0.0052 grains /SCFeffective removal of hydrophobic fumed silica having		Combust
<u>Date</u> July, 1986	Reference No EPA- 600/52-86 - [this is a head-to-he- vs. equipment a technology providd ETS, Inc. and Vula Engineering]	011 EPA Hazardous ad test Engineering Resea nd Cincinnati, C ed by	Waste Irch Lab,					and its hydrolysis	n hexafluoride Analysis of the products with rial shows the voal efficiency t wetted, but eeding 99%"; a film of water." le removal of should be version of this protion sort		•	22, 2002 Ewan's Te Federally
Sept. 1992	DOE PNL-8281	DE-AC06-76RIO 1 Battelle Memorial				Vaste Performance per Office o Solid Waste Emergency Response (OSWER) Directive 9335.3-01		f "cesium-137 was greater than 99.98%"; other metals, acids and organics "greater than 99.99%"				codified i
August 1993	DE-AC01-EW300	-30 Date	Re	ference No.		Report Title		Emissions T	argets	Description of	Tests	(taif prmaile e Conclusion
1993	WSRC-TR-93-006				Times Beach Superfu Site (Times Beach,		fund	,		CEMS measures: O2, CO2, NOx, CO, and SO2. Acids, metals and minerals. Continuous recording.		MACT Compliance. "Resource Conservation and Recovery Act (RCRA): DRE of 99.9999% for TCDD. Stack gas monitoring was conducted for oxygen and
Feb. 1996	EPA Contract No. 6 0164	8-D2-										carbon monoxide in accordance with 40 CFR Part 264, Subpart O."
		July 1998	DOE/ID-10651, Rev.1			Hazardous and Radioz Waste Treatmen Technologies Handb		PM, Hg, ROW (Radioactive Organic Waste), BRW (Blended Radioactive Waste)		Consolidated Incineration under SVM (Semi-Volatile Metals) + LVM (Low Volatile Metals) Standards		MACT Compliance, and Toxic Substances Control Act Incinerator (TSCAI)
		May 22, 2002	40 CFR §63.1209 (m) and §63.1209 (o)			A Guide to Phase I N Compliance — May 2002		PM, acids, HCl and Chlorine Gas				"hydrosonic, collision, or free-jet wet scrubber"
		unspecified	DC	DD/DOE docs				controlle	ed	At National L	abs.	Internal GOV official and formal EPA request

published its "Guide to se I MACT Compliance" Hazardous Waste nbustors MACT — May 2002

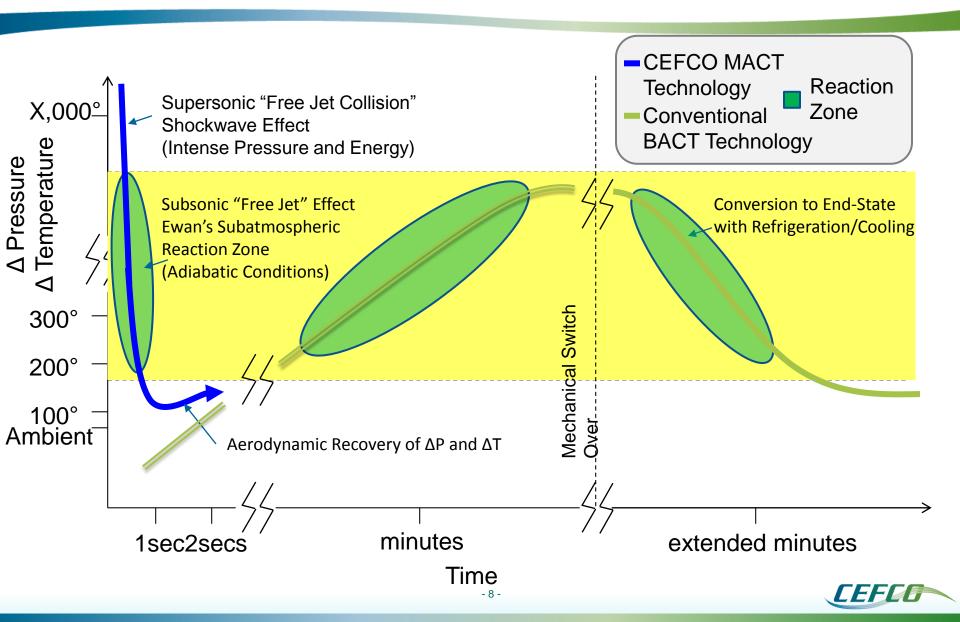
in's Technology was erally recognized and ified in 40 CFR §63.1209

"Renewable + Sustainable" = Providing "Pure CO₂" Gas to Makers of Advanced Fuels or Bio-Fuels or Algae Growers

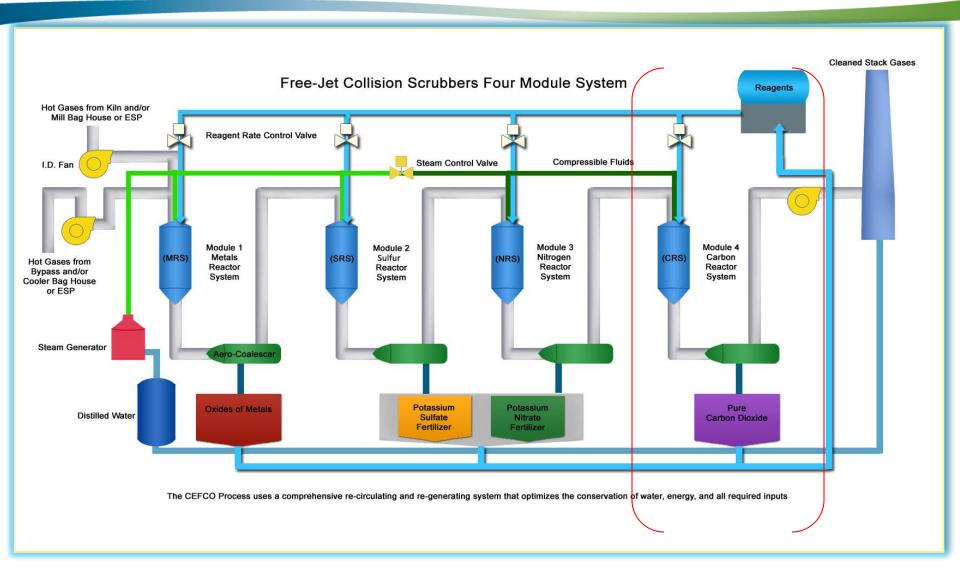
- Shockwave "reaction mechanism" pin-point delivery by "collision physics" (molecule-on-molecule impact) of all requisite Energy, Pressure at the "point-of-use" (molecular surface interaction chemistry: target + reagent) and serves as Catalyst to make Endothermic-then-Exothermic Reactions happen in a "split-second", in lieu of Conventional Thermo-Chemistry and long "residence time" which inputs unnecessary Energy and Pressure at vast spaces in between molecules (not at the "point-of-use") → ultra-low usage of Energy and Costs
- Shockwave Mechanism avoids High Cost and Energy Penalty associated with Heating and Cooling in conventional Capture of CO₂ – uses the aerospace phenomenon of rapid "Adiabatic Cooling" under the Shockwave
- Avoids Current Methods of CO₂ Capture that become contaminated by Traces of Amine or Ammonia
- Removes Energy Penalty and Stainless Pipeline Cost Burden to Compression and Transmission of Liquid CO₂
- Solution: CO₂ can be Captured as a Bicarbonate Solid/Liquid and Transported by Rail or Truck or Barge, and Released as "Pure" Gas by Ultimate Industrial User

Innovation: CEFCO's Supersonic Collision Reaction Mechanism can be Developed for the Petro-Chemical & Refinery Industry

Using the Supersonic Collision Reaction Mechanism to make Chemicals, such as Fuels and Plastics from Coal, Asphaltenes, or any Hydrocarbon Feedstock. This method could be a significant Energy-Reduction, Time-Reduction, Equipment and Steps Reduction, and overall Cost-Reduction application


Colliding any gas with another gas/vapor or liquid reagent at Supersonic Speeds: colliding CO + H₂ or CH₄ + H₂ with any combination of Carbon, CO or CO₂, O₂ with or without H₂O re-combination can form Polyethylene (PE) and Polypropylene (PP), and can add HCI or Cl₂ to form Ethylene Dichloride (EDC) to make PVC Plastic, etc.

 $2 \text{ CO} + 4 \text{ H}_{2} \rightarrow C_{2}\text{H}_{4} + 2 \text{ H}_{2}\text{O} \text{ [Ethylene]}$ $2 \text{ CO} + 4 \text{ H}_{2} + \text{Cl}_{2} \rightarrow C_{2}\text{H}_{4}\text{Cl}_{2} + 2 \text{ H}_{2}\text{O} \text{ [EDC]}$ $EDC_{o} + EDC_{n} \rightarrow PVC \text{ Plastics}$ $3 \text{ CO} + 7 \text{ H}_{2} \rightarrow C_{3}\text{H}_{8} + 3 \text{ H}_{2}\text{O} \text{ [Propane, etc.]}$ $C_{n}\text{H}_{x} + C_{n}\text{H}_{x} + \text{ etc.} \rightarrow \text{ Any Long-Chain Hydrocarbons or Fuels}$



Will license this reaction mechanism technology for Innovative Applications Development for Sustainable and Renewable Energy Purposes

Comparison of Parasitic Load or Energy Penalty

CEFCO — System Flow Diagram

MRS — Trace Metal Capture Mechanism

- Analysis of Coal-Fired and Pet-Coke Emissions
 show ~40 different kinds of metals and minerals
 → Hg, U, Pd, Cr, V, Ni, Be, Mn, Ge, Ti, Ba,
 Antimony, etc. can be recovered to reduce
 Importation from Overseas Countries
- Capture Mechanism: molecular surface area interaction between Pollutant and Reagent
 - Use of Steam: Shockwave shattering Steam's or Reagent's contact surface area to become multiplied thousands and thousands of times
 - Micro-droplets contact and envelope Targeted Pollutant and reform as moisture-encapsulated droplets
 - Capturing Product Reactions completed in split-seconds
- Molecular surface chemistry overcomes conventional mass transfer limitations

CRS (CO₂) Module — Collision Reaction Mechanism made Thermo-Chemistry Simple

Endo-then-Exothermic Reactions inside the Aerodynamic System:

- $CO_2 + KOH_{(reagent)} \rightarrow KHCO_3$ (Carbon Capture)
- $CO_2 + K_2CO_3 (reagent) + H_2O \rightarrow 2 KHCO_3 (Carbon Capture)$

Transient Reactions (verification of Hess's Law):

- $CO_2 + H_2O$ \rightarrow H_2CO_3
- KOH (reagent) + $H_2CO_3 \rightarrow KHCO_3 + H_2O$ (Carbon Capture)

Conventional Reactions after leaving the Aerodynamic Coalescer:

- Decarbonation = Liberation of Carbon Dioxide
- Heat + 2 KHCO₃ \rightarrow K_2CO_3 (regenerated) + CO_2 (liberated gas) + H_2O

Note: K_2CO_3 re-generation process liberates CO_2 as gas and produces supply of recovered water for many subsequent uses

Any cheaper Alkaline or Alkaline Metal Base Reagent will work for Regulatory Compliance, but Potassium Reagent works faster → Smaller Equipment Size

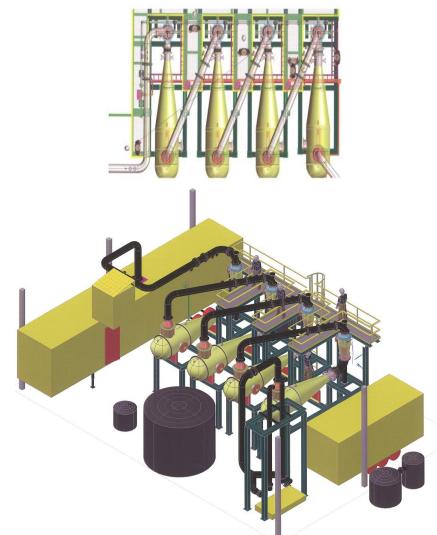
co₂ is Captured and Converted into Easily Transportable Solids

Potassium Bicarbonate = KHCO₃ (Solid)

Sodium Bicarbonate = NaHCO₃ (Solid)

Heat + 2 KHCO₃ [or 2 NaHCO₃] \rightarrow K₂CO₃ (regenerated) [or Na₂CO₃] + CO₂ (liberated gas) + H₂O

<u>Note:</u> K_2CO_3 [or Na₂ CO_3] re-generation process liberates CO_2 as a pure food-grade gas and produces supply of recovered water for many subsequent uses. The K_2CO_3 [or Na₂ CO_3] can be returned to the CEFCO Process to be re-used as the Reagent in the CRS. Any cheaper Alkaline or Alkaline Metal Base (e.g., Calcium) Reagent will work, but Potassium Reagent works faster.



Successful Capture of Potassium Fertilizer + CO₂

Pilot Plant at Peerless in Wichita Falls, TX (MRS + SRS → Ready for Commercialization)


- Phase I (MRS + SRS Modules) Success announced in November 9, 2011 Press Release by Peerless Mfg. Co.
- Seeking Demo-Partner for NRS and CRS

Pilot Plant in Wichita Falls, TX

10-Minute Video available in Website: www. cefcoglobal.com

Executive Summary

- Success of Parametric Testing of CEFCO's MRS and SRS Modules was announced by Peerless Mfg. Co. in Press Release dated November 9, 2011
- MRS and SRS Modules are ready for Commercialization → MACT, MATS, CSAPR and NESHAPs Compliance on a timely basis
- Pollution Control = "profit-generation" business; ≠ "cost-center"
- Reliable and affordable "renewable and sustainable" Hydrocarbon Energy:
 - Game-changing "transformative" (described by DOE) reaction mechanism technology = low-cost substitute for traditional thermodynamics and catalysts
- CO₂ can be Captured as a Bicarbonate Solid/Liquid and Transported by Rail or Truck or Barge, and Released as "Pure" Gas by Industrial User
- "Virtuous Circle for Zero Carbon Footprint" Repetitively recapturing
 CO₂ to make Synthetic Fuel for stationary Co-Generation of Electricity or
 Process Steam in repeating cycles ("renewable + sustainable")

Questions & Answers

Thank you very much for your attention.

Please Contact Us At:

For Robert Tang: robert.tang@cefcoglobal.com

Website: www.cefcoglobal.com

