CEFCO GLOBAL CLEAN ENERGY, LLC

McIlvaine Hot Topic Hour

PRODUCTION OF FERTILIZERS AND ACIDS AS BY-PRODUCTS AT COAL FIRED POWER PLANTS

Robert E. Tang, CEO and Co-Inventor

January 17, 2013

CEFCO's Innovative Solution

CO₂ Capture + All-Pollutant Capture = Regulatory Compliance + Renewable & Sustainable Technology + Recovering CAPEX and OPEX

 Use Ewan's shockwave "free-jet collision scrubbing" (recognized by EPA/DOE as HWC MACT in US Regs. 40 CFR §63.1209 et al.) to <u>capture all pollutants</u>

+

- Cooper Process to convert <u>all "captured pollutants" with Appropriate Reagents</u> into recovered, segregated, valuable, and <u>sellable End-Products</u>
- Accomplished using Supersonic Shockwave Reaction Mechanism under USPTO Patent issued on November 30, 2010 under: <u>US 7,842,264B2</u>
- CEFCO Users:
 - 1) Comply with all EPA's MACT, MATS, NSPS and NESHAPs Requirements
 - 2) Benefit of selling End-Products ≈ no longer "cost-center" ↔ recover OPEX + CAPEX
 - 3) New Economic Paradigm in the Power Co-generation World.

Ewan Technology: EPA MACT Compliant

	<u>Date</u> April 1, 1974	Reference No. EPA-650/2-74-028	F Steam	Report Title -Hydro Air Cleaning	<u>Emi</u> 0.03 m	ssions Targets icron to 5.0 micron	Desc Stea	ription of Tests m-Hydro Patent	Performa "90.0% at	ance Conclusion	EPA publ
		(Dale L. Harmon, EPA-NE RTP)	RC- Sys	stem Evaluation	(E	PA Method 5)	invente and as Steel	ed by T.K. Ewan sold signed to Lone Star (Div. of US Steel)	99.9% at 0.5 at 1	micron and 99.99% L.0 micron"	Phase I N
	Oct. 1976	NCASI — Special RTP	Krafi	t Recovery of TRS Emissions	Total R	educed Sulfur, H ₂ S, CO ₂	" nea treme for gas	ar instantaneous ndous surface area s-liquid contact 50 x 10 ⁻³ sec."	"TRS emission less than 2 run", "quite recommen	ons were reduced to 2 ppm during total e successful it is ded to test for SO ₂	for Hazaı
	Sept. 1977	EPA- 600/2-77 -193 und Dennis C. Drehmel, EPA Research Triangle Park	er EP.	PA/600/13 Code	Cont Parti	ract 68-02-2190: iculates, H ₂ S, SO ₂	"High Iow en achieve	performance with ergy requirement is d by the use of free	rer " well grains /SCF… hydrophobio	noval also" below the 0.0052 effective removal of the silica having	Combust
<u>Date</u> July, 1986	Reference N/ EPA-600/52-86- [this is a head-to-he vs. equipment a technology provid ETS, Inc. and Vul Engineering]	D. Report T D11 EPA Hazardou ad test Engineering Res nd Cincinnati, can	i <mark>tle</mark> s Waste earch Lab, OH	Emissions Tar	gets D ₂ , SO ₃	Description of "supersonic tande ", "most effecti versions tested fo of submicron par matter"	f Tests m nozzle ve of the r contro ticulate	Performance Page 2: "uraniur and its hydrolysis particulate remic consistently exx Page 3: "chlorid 99% or bette expected for any unit [vs. both c	Conclusion In hexafluorid s products wi oval efficiency ceeding 99%" de removal of r should be version of th ompetitors]."	article diameter s. This material e nalysis of the thr rial shows the y t wetted, but ; s film of water." apital cost and perating cost spray scrubbing ither ESP or FF	22, 2002 Ewan's To Federally
Sept. 1992	DOE PNL-8281	L DE-AC06-76RIO Battelle Memoria	1830 by al Institute	Hanford Radioactive Incineration	e Waste	Performance per Solid Waste Eme Response (OS) Directive 9335	Office of ergency WER) .3-01	" cesium-13 than 99.98%"; acids and organic 99.99	7 was greate other metals, cs "greater tha 9%"	r ter collection"	codified
August 1993	DE-AC01-EW300	-30 Date	Re	ference No.		Report Title		Emissions T	Targets	Description of Tests	Carf prmatice Conclusion
1993	WSRC-TR-93-006	523 1997	CERCLIS EPA F Manage U.S. EP Ci	#: MOD98068522 Remedial Project er: Robert W. Field A Region 7 Kansas ity, KS 66101	:6 On- Tii d	Site Incineration mes Beach Super Site (Times Beac Missouri)	at the fund h,	Dioxins, TCDD Orange) ("Agent ")	CEMS measures: O2, CO2 NOx, CO, and SO2. Acids metals and minerals. Continuous recording.	 MACT Compliance. "Resource Conservation and Recovery Act (RCRA): DRE of 99.9999% for TCDD. Stack gas monitoring was conducted for oxygen and exchoe meanuide in secondarce."
Feb. 1996	EPA Contract No. 6 0164	8-D2-									with 40 CFR Part 264, Subpart O."
		July 1998	DOE/	/ID-10651, Rev.1	Haz Te	ardous and Radic Waste Treatmer chnologies Hand	active nt book	PM, Hg, ROW (R Organic Wast (Blended Rad Waste	adioactive e), BRW lioactive e)	Consolidated Incineration under SVM (Semi-Volatile Metals) + LVM (Low Volatile Metals) Standard	MACT Compliance, and Toxic Substances Control Act Incinerator (TSCAI)
		May 22, 2002	40 CFR §	§63.1209 (m) and §63.1209 (o)	I A C	Guide to Phase I M Sompliance — May 2002	ИАСТ / 22,	PM, acids, HCl ar Gas	nd Chlorine		"hydrosonic, collision, or free-je wet scrubber"
		unspecified	DO	OD/DOE docs				controll	ed	At National Labs	Internal GOV official and forma EPA request

published its "Guide to se I MACT Compliance" Hazardous Waste nbustors MACT — May 2002

in's Technology was erally recognized and ified in 40 CFR §63.1209

CEFCO — System Flow Diagram

CEFCO's Unique Reaction Mechanism

- All flue gas must pass downward through Shockwaves → "no escape" from "free-jet collision" reaction mechanism
- Shockwave-generated molecular collision causes Energy Transfer in the immediate Endothermic Reaction
- Shockwave collision smashes fine Reagent droplets into micro-droplets
- Molecular Surface Chemistry between Target-Molecule with Reagent-Molecule within "split-second"
- Under Shockwave is very Adiabatic Condition catalyzing and driving the reaction completion and ending in Exothermic Reaction "locking in Product"
- Pollutants are captured using Physics first, then converted into valuable end-products using Chemistry

Profit from Valuable End-Product Sale

Sequenced modules selectively capture distinct and Valuable Products from Pollutants.

MRS — Trace Metal Capture Mechanism

 Analysis of Coal-Fired and Pet-Coke Emissions show ~40 different kinds of metals and minerals → Neutralized Valuable Trace Metals and Minerals can be recovered and could reduce Importation from Overseas Countries

- Capture Mechanism: molecular surface area interaction between
 Pollutant and Reagent
 - Use of Steam: Shockwave shattering Steam's or Reagent's contact surface area to become multiplied thousands and thousands of times
 - Micro-droplets contact and envelope Targeted Pollutant and reform as moisture-encapsulated droplets
 - Capturing Product Reactions completed in split-seconds
- Molecular surface chemistry overcomes conventional mass transfer limitations — virtually all Metals and Particulates are captured (per EPA/DOE)

Reaction Speeds under Shockwave Reaction Condition and Priorities in CEFCO Modules

#	Priority of Reaction Preference	Enthalpy [ΔH_f^{Θ}]	Time
			(Sec.)
1 SRS	Prior SOx + H ₂ O + O ₂ Reactions ¹ all Produce H ₂ SO ₄ Acids (very exothermic): 2KOH + H ₂ SO ₄ \rightarrow K ₂ SO ₄ + 2H ₂ O	Definitely will react very fast. <mark>[H₂SO₄ ΔH = −811.3 kJ/mol]</mark> + [ΔH = −342 kJ/mol] = Combined: [ΔH = −1,153.3 kJ/mole]	10 ⁻⁴
2 NRS H ₂ O ₂	(Eq. 1) 2 NO + 3 H ₂ O ₂ → 2 HNO ₃ + 2H ₂ O (Eq. 2) 2 HNO ₃ + 2 KOH → 2 KNO ₃ + 2 H ₂ O (Eq. 3) 2 NO + 3 H ₂ O ₂ + 2 KOH → 2 KNO ₃ + 4 H ₂ O	<mark>[ΔH = —940 kJ/mol]</mark> Definitely will react fast.	10⁻³
NRS ₀₂ ² Oxid. 2a	(Eq. 1) $2 \text{ NO} + O_2 \rightarrow 2 \text{ NO}_2$ (Eq. 2) $2 \text{ NO}_2 + 2 \text{ H}_2 \Theta \rightarrow 2 \text{ HNO}_3 + \text{H}_2$ (Eq. 3) $2 \text{ HNO}_3 + 2 \text{ KOH} \rightarrow 2 \text{ KNO}_3 + 2 \text{ H}_2 \Theta$ (Eq. 4) $2 \text{ NO} + O_2 + 2 \text{ KOH} \rightarrow 2 \text{ KNO}_3 + \text{H}_2$	Hess's Law Bond Enthalpy Calculations (gas as neutral): [ΔΗ = – 172 kJ/mol]	10 ⁻²
NRS _{o2} 2b	$2 \text{ NO} + \text{O}_2 + 2 \text{ KOH} \rightarrow 2 \text{ KNO}_3 + \text{H}_2$	Bond Enthalpy Calcs (+ adding gas bonds): [ΔH = – 234 kJ/mol]	10⁻²
NRS ₀₂ 2c	$2 \text{ NO} + \text{O}_2 + 2 \text{ KOH} \rightarrow 2 \text{ KNO}_3 + \text{H}_2$	Standard Enthalpy Text Book Calculations: [ΔH = -205.76 kJ/mol]	10 ⁻²
NRS ₀₂ 2d	$HNO_3 + KOH \rightarrow KNO_3 + H_2O$	Empirical Test Data: [ΔH = −181 kJ/mol]	10 ⁻²
NRS ₀₂	Average of 4 O ₂ Oxid. Routes	<u>–198.19 kJ/mole</u>	10⁻²

¹ # 1a: SO + H₂O \rightarrow SO₂ + H₂ + O₂ \rightarrow H₂SO₄ [Δ H = -811.3 kJ/mol]

^{# 1}b: $SO_2 + H_2O \rightarrow H_2SO_3 + \frac{1}{2}O_2 \rightarrow H_2SO_4$ [$\Delta H = -811.3 \text{ kJ/mol}$]

^{# 1}c: $SO_3 + H_2O \rightarrow H_2SO_4$ [$\Delta H = -811.3 \text{ kJ/mol}$]

² Substituting O₂ Gas in place of H₂O₂ Peroxide may save Chemical Input Cost. The NRS reactions will be less exothermic and a bit slower. Will produce the same K₂NO₃ Fertilizer results.

Fertilizer Making — SRS (SO_x) Module

Endo-then-Exothermic Reactions inside the Aerodynamic Reactor System:

- SO and SO₃ may exist in very small quantities in Flue Gas can be oxidized very rapidly by injecting O₂ (or H₂O₂)
- Vast Majority ends up as SO₂ in Flue Gas:
- $SO_2 + H_2O$ \rightarrow H_2SO_3
- $2H_2SO_3 + O_2$ (or H_2O_2) \rightarrow $2H_2SO_4$ (Sulfuric Acid)
- $H_2SO_4 + 2 \text{ KOH}_{(reagent)} \rightarrow K_2SO_4 + 2 H_2O$ (Valuable and Sellable Reaction Products, especially in dry-climate farming areas)
- See: "Oxidation" and "Exothermic" Reactions

Any cheaper Alkaline (Na) or Alkaline Metal (Ca) Base Reagent will work for Regulatory Compliance making a salt by-product for disposal, but only Potassium Reagent makes high-value and sellable Fertilizer-Product

Fertilizer Making — NRS (NO, NO_x) Module

Endo-then-Exothermic Reactions inside the Aerodynamic Reactor System :

- $2 \text{ NO} + 2 \text{ H}_2\text{O}_2 \text{ (reagent)} \text{ (or O}_2) \rightarrow 2 \text{ NO}_2 + \text{H}_2\text{O}$
- $2 \text{ NO}_2 + \text{H}_2\text{O} \rightarrow \text{HNO}_2 + \text{HNO}_3$
- 2 NO₂ + H₂O_{2 (reagent)} (or injecting O₂) → 2 HNO₃ (Nitric Acid itself is a Product, but of lesser value than Fertilizer)
- KOH (reagent) + HNO₃ → KNO₃ + H₂O (Valuable Fertilizer and Water Products, as better choice than Ammonium Nitrate being banned in EU)

Transient Reactions (Hess's Law is verified):

- KOH (reagent) + HNO₂ \rightarrow KNO₂ + H₂O
- KNO₂ + H₂O_{2 (reagent)} (or injecting O₂) → KNO₃ + H₂O (Valuable Fertilizer and Water Products)
- See: "Oxidation" and "Exothermic" Reactions

Any cheaper Alkaline (Na) or Alkaline Metal (Ca) Base Reagent will work for Regulatory Compliance making a salt by-product for disposal, but only Potassium Reagent makes high-value and sellable Fertilizer-Product

Successful Capture of Potassium Fertilizers

SO₂ and NOx are Captured and Converted into Valuable and Sellable Fertilizers

Potassium Sulfate Fertilizer = K_2SO_4 (Solid)

Potassium Nitrate Fertilizer = KNO₃ (Solid)

- > 99+% Pure K_2SO_4 (Solid) is sold around \$3,000/ton to Wholesale Distributors in the dry-climate farming areas of the world.
- 99+% Pure KNO₃ (Solid) is sold around \$2,000 to \$3,000/ton to Wholesale Distributors, being a likely substitute or blend-in for Ammonium Nitrate in the global market, starting with the EU.

Potential Range of \$ Revenue from Products at 3 Kinds of Typical 1,000 MW Coal-Fired Power Plant

PRB Coal: End-Products Manufa	ctured for Sale					
Produced Item	Tons /1,000 MW Tons /		Ton/Per ACFM	Ton/Per Oper.	\$ Selling	\$ Revenue/8,000 Hrs.
	Capacity	MWe Cap.		Hour	Price/Ton	+ ·····, -, -,
Trace Metals	1,144	1.14	0.002383	0.142952	\$20,000	\$22,872,333
K2SO4 Fertilizer (pure)	69,238	69	0.144246	8.654750	\$3,000	\$207,714,000
KNO3 Fertilizer (pure)	22,500	23	0.046875	2.812500	\$2,500	\$56,250,000
CO2 (pure = KHCO3 solid)	7,919,705	7,920	16.499385	989.963125	\$O	\$O
H2O Produced	3,241,893	3,242	6.753944	405.236625	\$3.00	\$9,725,679
K2CO3	24,870,470	24,870	51.813479	3,108.808750	\$0	\$0
Totals:						\$296,562,012

Illinois-Ohio Basin Hi-Sulfur Coal:	End-Products Ma			High Quantity S		
Produced Item	Tons /1,000 MW Capacity	Tons / MWe Cap.	Ton/Per ACFM	Ton/Per Oper. Hour	\$ Selling Price/Ton	\$ Revenue/8,000 Hrs.
Trace Metals	1,372	1.37	0.002859	0.171543	\$25,000	\$34,308,500
K2SO4 Fertilizer (pure)	533,238	533	1.110913	66.654750	\$3,000	\$1,599,714,000
KNO3 Fertilizer (pure)	41,587	42	0.086640	5.198375	\$2,500	\$103,967,500
CO2 (pure = KHCO3 solid)	7,593,345	7,593	15.819469	949.168125	\$0	\$0
H2O Produced	3,108,299	3,108	6.475623	388.537375	\$3.00	\$9,324,897
K2CO3	23,845,592	23,846	49.678317	2,980.699000	0	\$0.00
Totals:						\$1,747,314,897

No. Dakota Lignite Coal: End-Pro	ducts Manufacture	ed for Sale				Med. Quantity S
Produced Item	Tons /1,000 MW Capacity	Tons / MWe Cap.	Ton/Per ACFM	Ton/Per Oper. Hour	\$ Selling Price/Ton	\$ Revenue/8,000 Hrs.
Trace Metals	754.787	0.75	0.001572	0.094348	\$30,000	\$22,643,610
K2SO4 Fertilizer (pure)	193,200	193	0.402500	24.150000	\$3,000	\$579,600,000
KNO3 Fertilizer (pure)	22,529	23	0.046935	2.816125	\$2,500	\$56,322,500
CO2 (pure = KHCO3 solid)	10,464,578	10,465	21.801204	1,308.072250	\$0	\$0
H2O Produced	4,283,625	4,284	8.924219	535.453125	\$3.00	\$12,850,875
K2CO3	32,862,206	32,862	68.462929	4,107.775750	0	\$0.00
Totals:						\$671,416,985

Pilot Plant at Peerless in Wichita Falls, TX (Modules → Ready for Commercialization)

- Phase I Success announced in November 9, 2011 Press Release by Peerless Mfg. Co.
- Seeking Phase II Demo-Partner for Carbon Capture in CRS

Pilot Plant in Wichita Falls, TX

10-Minute Video available in Website: www. cefcoglobal.com

Executive Summary

- CEFCO's Modules Commercialization → MACT, MATS, CAIR and NESHAPs Compliance on a timely basis
- Pollution Control = "profit-generation" business; ≠ "cost-center"
- Reliable and affordable:
 - Game-changing "transformative" (described by DOE) reaction mechanism technology = low-cost substitute for traditional thermodynamics and catalysts
- SO₂ and SO_x can be Captured as a Potassium Sulfate Fertilizer, and Sold to Distributors and Users
- NO_x can be Captured as a Potassium Nitrate Fertilizer, and Sold to Distributors and Users
- "Virtuous Recycling" of a Toxic Pollutants into a meritorious Fertilizer at Coal-Fired and Gas-Fired Power Plants to become Co-Generation of Electricity and Sellable Products in "renewable + sustainable" cycles

Questions & Answers

Thank you very much for your attention.

Please Contact Us At:

For Robert Tang: robert.tang@cefcoglobal.com

Website: www.cefcoglobal.com

Appendix 1a — EPA and DOE Reports on Ewan Technology (1974 to 1986)

<u>Date</u>	Reference No.	<u>Report Title</u>	Emissions Targets	Description of Tests	Performance Conclusion
April 1, 1974	EPA-650/2-74-028	Steam-Hydro Air Cleaning	0.03 micron to 5.0 micron	Steam-Hydro Patent	"90.0% at 0.01 micron
	(Dale L. Harmon, EPA-NERC-	System Evaluation	(EPA Method 5)	invented by T.K. Ewan sold	99.9% at 0.5 micron and 99.99%
	RTP)			and assigned to Lone Star	at 1.0 micron"
				Steel (Div. of US Steel)	
Oct 1976	NCASI — Special	Kraft Recovery of TRS	Total Reduced Sulfur, H ₂ S	" near instantaneous	"TRS emissions were reduced to
000.1570	BTP	Emissions		tremendous surface area	less than 2 npm during total
		Emissions		for gas-liquid contact	run" "quite successful it is
				$E0 \times 10^{-3} \cos^{20}$	recommended to test for SO ₂
				50 X 10 Sec.	removal also"
Sept. 1977	EPA- 600/2-77 -193 under	EPA/600/13 Code	Contract 68-02-2190:	"High performance with	" well below the 0.0052
	Dennis C. Drehmel. EPA.		Particulates, H ₂ S, SO ₂	low energy requirement is	grains /SCFeffective removal of
	Research Triangle Park			achieved by the use of free-	hydrophobic fumed silica having
	0			, iet"	a near uniform particle diameter
					of 0.007 microns. This material
					rejects water. Analysis of the
					captured material shows the
					particulate not wetted, but
					encapsulated in a film of water."
Feb. 10. 1986	DCN 86-213-071-03	Radian Corp. Technical and	MSW, PM, HCl, SO ₂ , SO ₂	"proven below 0.02	"shows overall capital cost and
		Economic Evaluation for		grains/scf", "achieved 99%	total annual operating cost
		MSW Incineration		HCl removal". "using slaked	advantage over spray scrubbing
				lime reagent 95% SO ₂	systems, using either ESP or FF
				removal"	particulate matter collection"

Appendix 1b — EPA and DOE Reports on Ewan Technology (1986 to 1996)

<u>Date</u>	Reference No.	<u>Report Title</u>	Emissions Targets	Description of Tests	Performance Conclusion
July, 1986	EPA- 600/S2-86 -011	EPA Hazardous Waste	APCD, PM, HCl, SO ₂ , SO ₃	"supersonic tandem nozzle	Page 2: "uranium hexafluoride
	[this is a head-to-head test	Engineering Research Lab,		", "most effective of the	and its hydrolysis products with
	vs. equipment and	Cincinnati, OH		versions tested for control	particulate removal efficiency
	technology provided by			of submicron particulate	consistently exceeding 99%";
	ETS, Inc. and Vulcan			matter"	Page 3: "chloride removal of
	Engineering]				99% or better should be
					expected for any version of this
					unit [vs. both competitors]."
Sent 1992	DOF PNI -8281	DF-AC06-76RIO 1830 by	Hanford Radioactive Waste	Performance per Office of	" cesium-137 was greater
00pti 1552		Battelle Memorial Institute	Incineration	Solid Waste Emergency	than 99.98%": other metals.
				Response (OSWFR)	acids and organics "greater than
				Directive 9335.3-01	99.99%"
August 1993	DE-AC01-EW300-30	DOE/MWIP-3 by SAIC	PNL — Idaho Labs	undisclosed	undisclosed
1993	WSRC-TR-93-00623	Final Report: Consolidated	CIF, POHCs (Principal	CEMS measures: O2, CO2,	Destruction "greater than
		Incineration Facility by	Organics Hazardous	NOx, CO, and SO2.	99.99998%"
		Westinghouse Savannah	Constituents), Metals,	Continuous recording by	
		River Corporation	TVOC, Chlorides, PAH	strip charts. The CEMS	
			(Polynuclear Aromatic	monitored both the PCC	
			Hydrocarbons)	and SCC flue gases	
Feb. 1996	EPA Contract No. 68-D2-	Technical Support		Page 3-17, Section 3.4.2.2,	
	0164	Document for HWC MACT		Page 3-58, Figure 3-14	
		Standards, Vol. I			

Appendix 1c — EPA and DOE Reports on Ewan Technology (1997 to 2002)

<u>Date</u>	Reference No.	<u>Report Title</u>	Emissions Targets	Description of Tests	Performance Conclusion
1997	CERCLIS #: MOD980685226	On-Site Incineration at the	Dioxins, TCDD ("Agent	CEMS measures: O2, CO2,	MACT Compliance. "Resource
	EPA Remedial Project	Times Beach Superfund	Orange")	NOx, CO, and SO2. Acids,	Conservation and Recovery Act
	Manager: Robert W. Field	Site (Times Beach,		metals and minerals.	(RCRA): DRE of 99.9999% for
	U.S. EPA Region 7 Kansas	Missouri)		Continuous recording.	TCDD. Stack gas monitoring was
	City, KS 66101				conducted for oxygen and
					carbon monoxide in accordance
					with 40 CFR Part 264, Subpart
					0."
July 1998	DOE/ID-10651, Rev.1	Hazardous and Radioactive	PM, Hg, ROW (Radioactive	Consolidated Incineration	MACT Compliance, and Toxic
		Waste Treatment	Organic Waste), BRW	under SVM (Semi-Volatile	Substances Control Act
		Technologies Handbook	(Blended Radioactive	Metals) + LVM (Low	Incinerator (TSCAI)
			Waste)	Volatile Metals) Standards	
May 22, 2002	40 CFR §63.1209 (m) and	A Guide to Phase I MACT	PM, acids, HCl and Chlorine		"hydrosonic, collision, or free-jet
	§63.1209 (o)	Compliance — May 22,	Gas		wet scrubber"
		2002			
unspecified	DOD/DOE docs		controlled	At National Labs	Internal GOV official and formal
					EPA request

EPA published its "Guide to Phase I MACT Compliance" for Hazardous Waste Combustors MACT — May 22, 2002 Ewan's Technology was Federally recognized and codified in U.S. Regulations: 40 CFR §63.1209 et al.

