Unity Power Alliance

One Goal – Zero Emissions

Pressurized Oxy-Combustion

An Advancement in in Thermal and Operating Efficiency for Clean Coal Power Plants

Jan, 2013

Advantages of Pressurized Oxy-Combusition

Unity Power Alliance One Goal – Zero Emissions

- POXC[™] can be retrofitted into existing plants utilizing existing infrastructure of steam cycle, coal handling and transmission lines.
- POXC[™] plants can achieve net efficiency's >35%
- LCOE < 1.3X vs conventional PC
- Proven ability to utilize low rank coals
- Virtually no emissions; Fly Ash eliminated and vitrified slag classified as inert in the EU
- Dramatically improved water profile
- Captures CO2 at pressure requiring minimal CPU treatment

POXCTM: Regarded as the most efficient and cost effective carbon capture combustion technology for coal, natural gas and biogas

¹Study by Canadian government (CANMET)

Technology Status of Pressurized Oxy-Combustion

- Proven Technology: 8+ Years of results at 5 and 15MWth
- 2. Outstanding environmental results: CO2 ready for CCUS with minimal CPU treatment
- 3. Engineering sufficiently advanced to complete 50MWth Pilot and 320MWe Demonstration
- 4. DOE award to study optimized pressure

Plant 15 MWth - Jurong, Singapore

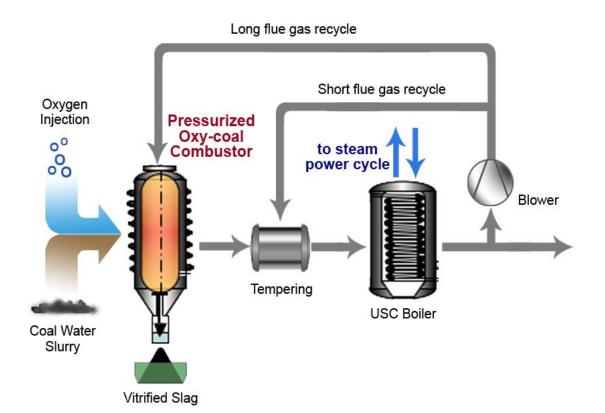
Technology, Performance, and Benefits

POXC[™]– Poised for Success

Unity Power Alliance

One Goal - Zero Emissions

•Clean Power: 5MWth Pilot in Italy– *in operation since* 2004

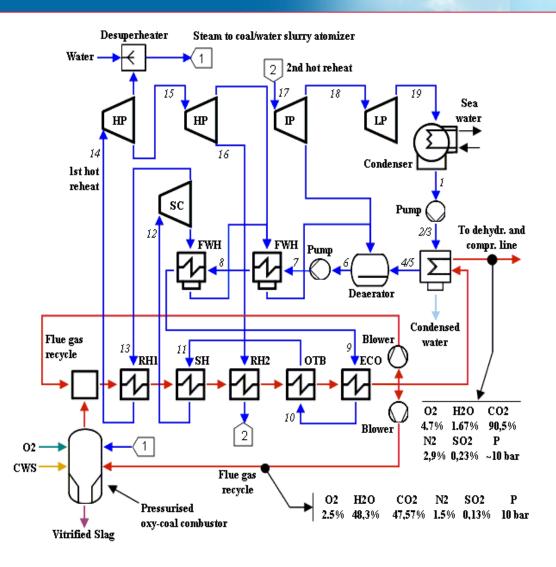

- Pressurized oxy-fuel combustion of coal has been proven to be economic and environmentally sound.
- All emissions are virtually eliminated
- Modular Units applicable for brownfield and greenfield sites
- Flexible boiler allows integration into grids with increasingly variable demand patterns
- Ability to utilize low rank coals

Cost Effective & Grid Compatible

Unity Power Alliance

One Goal - Zero Emissions

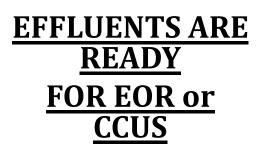
- New POXC[™] Process can replace existing Boiler
- Brownfield application can utilize existing turbines
- Size POXC[™] for power plant output steam requirements
- Tremendous Energy cycle flexibility: 10-100% in 30 min.
- Much smaller footprint, capable of retrofit into existing facilities
- Captures all emissions (e.g., CO₂, S, Hg, etc.) for sale or sequestration
- Plant will reduce water consumption by 50-60%: large environmental benefit.


Key feature with new boiler design is ability to vary production rates quickly, allowing flexibility to utilize low-cost coals while accommodating Electric Grid load variances due to solar and wind inputs

320 MWe CCUS Power Plant

Unity Power Alliance

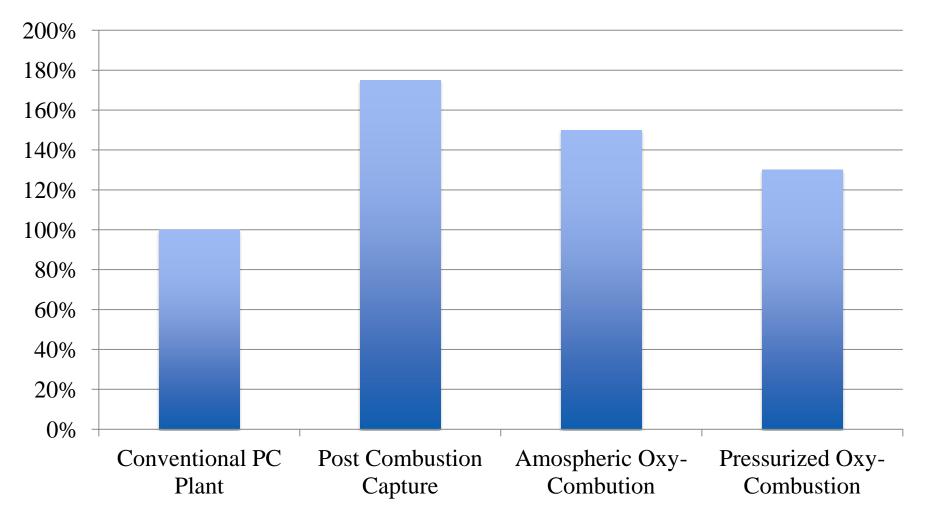
- Power:
 > 320 MWe
- FEED: Low rank coals
- Net efficiency:
 > 35 %
- Capex:
 < 1900 €/kW



Energy from Coal

Unity Power Alliance

One Goal - Zero Emissions


NO FLUE GAS !!! NO STACK !!!

Chemical analysis of the effluents	Isotherm PWR®
СО	$< 1 \text{ mg/m}^3$
NOx	$< 100 \text{ mg/m}^{3}$
SOx	$< 30 \text{ mg/m}^3$
тос	<0.05 mg/m ³
HCl	$< 0.1 \text{ mg/m}^3$
РАН	<0,0001mg/m ³
Dust (total)	$< 1 \text{ mg/m}^3$
PM 2.5	<10 µg/m ³
Dioxin, Furans	<0,0001 ng/m ³
Heavy metals	< 0,1 mg/m ³
SOOT	Zero
CO2 v (in flue gas)	>93 %

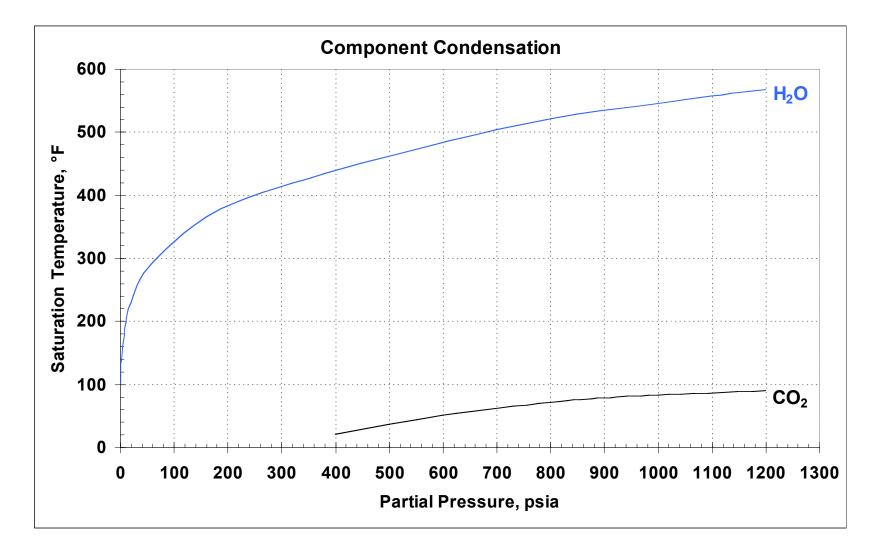
Normalized LCOE

Unity Power Alliance

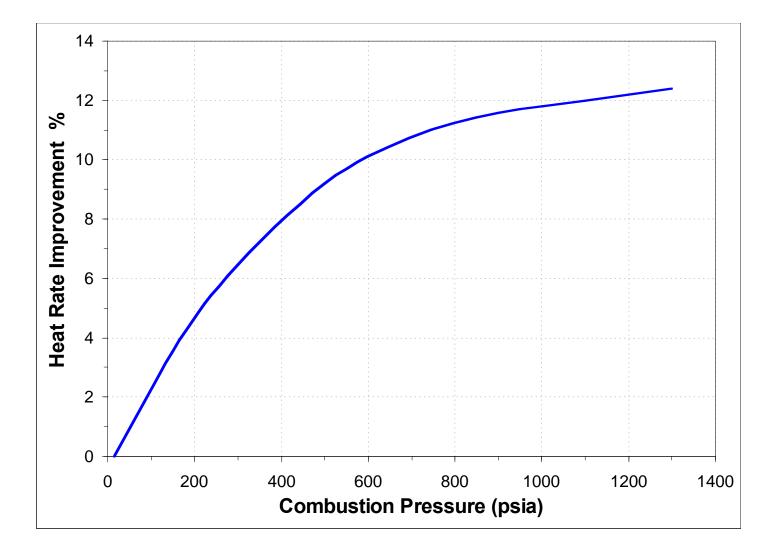
Cycle performance

Unity Power Alliance

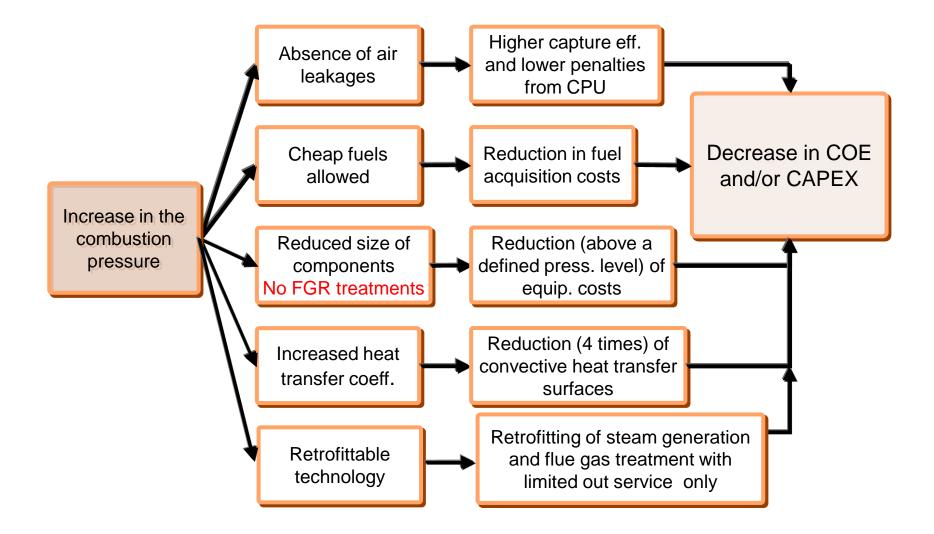
Assumptions	Cycle Performance Summary	
> O2 Production cost: 0.275		CO ₂ Capture Case
 kWh/kg O2 mole fraction @ outlet: 2.5% O2 Purity: 98% 	Gross Performance Net Fuel Input Gross Power Gross Efficiency	903 MW 430 MW 47.6%
 Convective Boiler Inlet T: 820°C Combustor ΔP/P: 1% Combustor Heat Loss: 2% 	Plant Auxiliaries ASU CPU Other Plant Auxiliaries Total Auxiliaries	75 MW 17 MW 18 MW 110 MW
	Net Performance Net Power Net Heat Rate Net Efficiency	320 MW 10158 kJ/kWh 35.44%


Why are pressurized conditions related to high efficiency?

Unity Power Alliance


Pressurized OxyCombustion: Latent Heat of Water is Available at Useful Temperature; CO₂ Condenses to Liquid at Ambient Heat Sink Temp.

Unity Power Alliance


POXC[®] Efficiency vs. Pressure: Improvement over Ambient Oxycombustion

Unity Power Alliance

Why are COE and CAPEX reduced ?

Unity Power Alliance

The Market and Beneficiaries

Repowering Applications

Unity Power Alliance One Goal – Zero Emissions

- Potential market 50-100 GW.
- POXC[®] replaces steam generator; two options:
 - Complete replacement of existing steam generator.
 - Operate in parallel with existing steam generator.
- Older steam generator could remain as backup.
- Existing BOP and steam turbine utilized.
- Potential for turbine steam path upgrade.
- POXC[®] steam generator will match any turbine / BOP requirement.

New Plant Applications: POXC can be Designed for Any New Plant

- POXC[®] can be designed for any steam cycle:
 - Subcritical, supercritical, UltraSuperCritical (USC).
 - Modular design accommodates double reheat, with low pressure drops and enhanced efficiency.
 - Feedwater heating cycle integration in plant design will optimize plant efficiency.
 - Subsystem heat recovery / integration less than for ambientpressure oxy-combustion.
- Fuel-flexible: Wide range of coals, pet coke, some biomass. Very little efficiency penalty for high-moisture fuels.
- Partial oxidation / gasification is an option provided in patents.
- Compact footprint, modular vessel designs.
- Up to ~320 MWe per train. Multiple trains for larger plants.

Repowering Existing Units: Emissions Regulations: Retrofit, Repower, or Retire?

MACT emissions regulations: SOx, NOx, Hg, PM

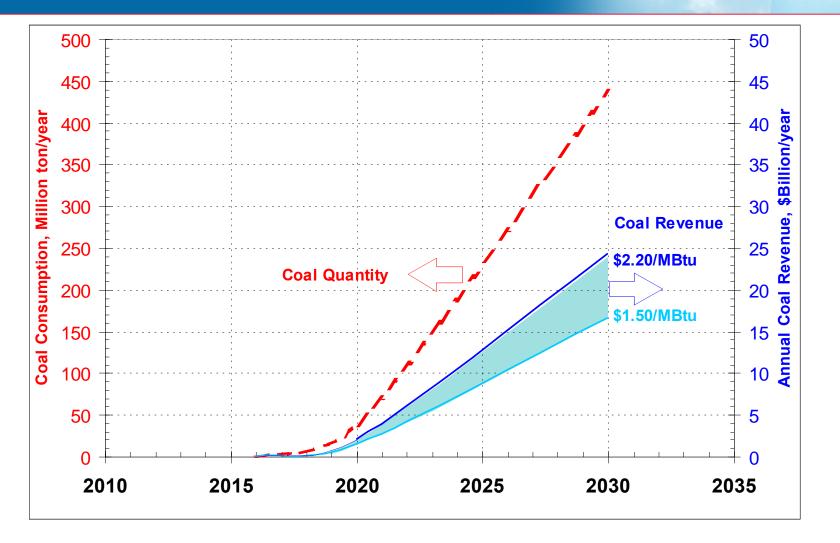
- Plants currently without SCR or FGD would require investment, ~\$30/MWhr.
- Plants currently with some emissions controls may require ~\$6/MWhr.
- If CO₂ is also regulated,
 - One option is to retrofit with both MACT controls and post-combustion CO₂ capture system (PCC).
 - Alternative is to repower (replace boiler system) with POXC integrated, multi-pollutant capture system.
 - Cost of CO₂ avoided can be thought of as the 'break-even' valuation of CO₂ that would result in the non-capture base plant having the same LCOE (or dispatch cost) as that from the capture case. (In other words, it is the CO₂ 'tax' that would justify installing the retrofit or repowering equipment.)

Emissions control cost range representative of 90% of the total capacity requiring some additional controls.

Sources include HIS CERA and Ventyx.

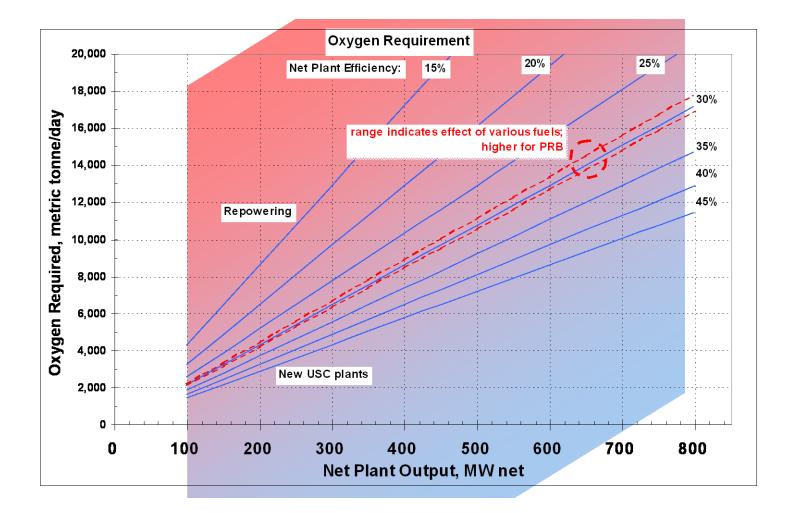
\$6/MWhr ~ \$460/kW; \$30/MWhr ~ \$2300/kW; based on 25 yrs, 8.47%, 85% capacity factor.

Repowering Existing Units Benefits


Unity Power Alliance One Goal – Zero Emissions

<u>Re-Powering America's coal-fired power plants with POXC[®] means</u> <u>that:</u>

- In addition to capturing CO₂ in a supercritical state, SO_x, NO_x, chlorides, mercury, and particulate emissions are eliminated, meeting EPA air regulations.
- Much of the existing power generation and transmission infrastructure can be utilized, minimizing new investment.
- Converted plants may utilize complete range of coal types, pet coke, or biomass.
- Jobs will be kept and created instead of lost.
- State and local government will maintain tax bases.
- Higher electricity prices that would have resulted from expensive plant replacements will not harm industry and consumers.
- POXC[®] would make a significant contribution towards addressing CO₂ emissions or providing the options for future implementation.


Coal Market Evaluation: 200 GW CCS Market Represents \$17-24B Annually in Coal Revenue

Unity Power Alliance

ASU Oxygen Requirement Each 600MWe plant represents > \$100MM/yr Oxygen contract

Unity Power Alliance

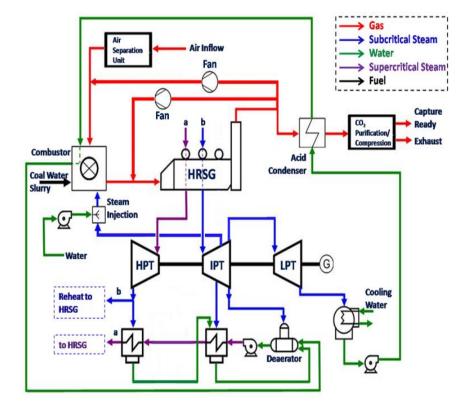
POXC[®] Advantage Summary

- Proven carbon capture technology at 5 and 15 MW.
- Highest plant efficiency and lowest cost among CCS options.
- Suitable for repowering existing plants and for optimized new plants.
- Scale is compatible with EOR needs.
- Multi-pollutant capture system exceeds all pending emissions regulations.
- Technology that has global potential.

Ready for Deployment 50 MWth Pilot Plant

Unity Power Alliance One Goal – Zero Emissions

Oxygen Storage Handling coal-water slurry Reactor Oxygen VPSA Plant USC Boiler Ash separation section IIIIII Control Room


Unity Power Alliance

ENEL – MIT cost assessment

Thermodynamic Cycle and data costs assessment

Unity Power Alliance

Parameters	Values
Plant Life (years)	25
Plant Capacity (%)	85
Contingency (% of capital costs)	15
Discount Rate (%)	10
Interest Rate (%)	10
Inflation Rate (%)	4
Overall Tax Rate (%)	38
Debt Term (years)	15
Depreciation Life (years)	25
Debt vs. Equity (%)	70/30
Fixed O&M Cost (% of capital costs)	4
Variable O&M Cost (\$/kWh)	0.002
Coal Price (\$/GJ-LHV)	2
Water Price (\$/m ³)	0.28