

CLYDE BERGEMANN EEC

Precipitator Efficiency Improvement

August 25, 2011

ESP Performance Improvements can be done via two paths, or a combination of both:

- Modifications or Enhancements to Existing ESP
- Structural/Physical Changes to ESP Size

Improvements presented are based on estimated reduction in emissions

Enhancements to Existing ESP

Good Maintenance!

- Are the internals aligned?
- Are <u>all</u> rappers working?
- Are T/R controllers working and optimized?
- Are T/R signals calibrated and working at controller?
- Are all meters working?
- Is ash removal system working?
- Are all insulators clean?
- Have any leaks been eliminated?

Improvements 5-10% dependent upon work done

Enhancements to Existing ESP (cont.)

- Power supplies
 - Conventional T/R's and controls – upgrade to newer controls
 - IE
 - Pulsing
 - Higher frequency power supplies
 - Mid frequency
 - High frequency

Improvements 10-30% dependent upon increase in power

Hot Topic Hour 8-25-11 © CBS Clyde Bergemann Ltd, Scotland - All rights reserved

ESP Performance Improvement

Enhancements to Existing ESP (cont.)

• Electrical field sectionalization

Improvements 5-20% based upon degree of sectionalization

Enhancements to Existing ESP (cont.)

- Optimized rapping program
 - → Opacity charts to evaluate rapping
 - Rapping spikes
 - Localized rapping issues
 - Excessive rapping
 - Power Levels to ensure good and consistent voltage-current relationship
 - Increase in current/drop in voltage
 - Increase in voltage/drop in current

Improvements 5-10% based upon starting point of optimization

ESP Performance Improvement

Enhancements to Existing ESP (cont.)

- Review Gas Distribution
 - →ICAC guidelines
 - Skewed gas flow
- Minimize Sneakage

Improvements 5-10% based on degree of maldistribution

ESP Performance Improvement

ESP Outlet

ESP Inlet

Skewed gas flow:

- Bias flow into upper regions of ESP
 - → Higher gas flow at top of ESP
 - → Majority of dust in bottom region of ESP
 - Hopper re-entrainment

ESP Velocity Profile (Elevation)

Enhancements to Existing ESP (cont.)

Summary:

- Good Maintenance
- Power Supplies
- Discharge Electrode Design
- Sectionalization
- Optimize Rapping
- Review Gas Distribution
- Minimize Sneakage

Note: Improvements are not completely additive – there is a practical limit to how much improvement one can achieve out of an ESP

Structural/Physical Changes to ESP Size

- Increase plate height
 - Increase collecting area
 - Lower gas velocity and increase residence time in treatment area (if no change in volume)
 - Requires change in discharge electrodes to match new height
 - Need to evaluate structurally the casing/support steel
 - → May need to increase T/R sizes

Structural/Physical Changes to ESP Size (cont.)

- Add field at inlet or outlet
 - Increase collecting area
 - Increase sectionalization by adding fields
 - Increase residence time in treatment area (if no change in volume)
- Additional chamber
 - Size dependent upon level of performance improvement desired
 - Space constraints
 - Ductwork issues

Thank you!

