Mcllvaine – “Hot Topic Webinar”

Here are some suggestions to consider

By: Richard F. (Dick) Storm, PE
Storm Technologies, Inc.
Coal Plant Generation Challenges are different today due to wind power & natural gas!

-Wind and other renewables plants are “must run” as nuclear are: With a declining 24/7 Industrial Base Load, coal plant minimum loads and response to a sudden demand increase are different.
Cost of Production for Fuel Component Only

Does not include maintenance cost, scrubber chemicals, operations labor, cost of Capital or any administrative or overhead costs. This is for fuel only, which is usually about 80% of the cost of power production.

CCGT
- Heat Rate = 7,050 Btu/Kwh
- Fuel Cost = $2/MBtu
- Production Cost = $14.1/MWh

PC Boiler
- Heat Rate = 9,500 Btu/Kwh
- Fuel Cost = $2.2/MBtu
- Production Cost = $20.9/MWh
The Challenges

- Keep Plants Reliable, they are needed in the Generation Portfolio
- Optimize Combustion and Overall Efficiency of Generation
- Improve Load Range and Load Responsiveness
- Reduce Fuel Costs and Optimize O&M Costs
- Compete, Supplement and Co-Exist with Natural Gas & All Other Fuels
Storm’s Experience

- Coal plants need greater turn down for low load operation in low demand periods.
- Coal plants need faster response from minimum to intermediate loads to back up sporadic renewable power.
- Low natural gas prices have caused plants to change fuels, blend fuels and co-fire with natural gas.

U.S. Natural Gas Wellhead Price

Dollars per Thousand Cubic Feet

Gas Price volatility just 6 years ago shows the need for coal plants for stable electricity production prices.
Always Apply the Fundamentals First!

Thirteen Essentials of Optimum Combustion for Low NO₂ Burners

1. Furnace exit must be oxidizing preferably, 3%.
2. Fuel lines balanced to each burner by “Clean Air” test ±2% or better.
3. Fuel lines balanced by “Dirty Air” test, using a Dirty Air Velocity Probe, to ±5% or better.
4. Fuel lines balanced in fuel flow to ±10% or better.
5. Fuel line fineness shall be 75% or more passing a 200 mesh screen. 50 mesh particles shall be less than 0.1%.
6. Primary airflow shall be accurately measured & controlled to ±3% accuracy.
7. Overfire air shall be accurately measured & controlled to ±3% accuracy.
8. Primary air/fuel ratio shall be accurately controlled when above minimum.
9. Fuel line minimum velocities shall be 3,300 fpm.
10. Mechanical tolerances of burners and dampers shall be ±1/4" or better.
11. Secondary air distribution to burners should be within ±5% to ±10%.
12. Fuel feed to the pulverizers should be smooth during load changes and measured and controlled as accurately as possible. Load cell equipped gravimetric feeders are preferred.
13. Fuel feed quality and size should be consistent. Consistent raw coal sizing of feed to pulverizers is a good start.
Accurate Airflow Management and Control is REQUIRED!

- The solid fuel injection system approach (both fuel and air metered)
- Fuel fineness should be optimum

Coal

- The Primary Air Damper and adequate changes in Primary Airflow are what transports the Coal from the pulverizer to the furnace.

Natural Gas

- The gas flow control valve is the sole fuel flow regulator on a natural gas fueled boiler
For Faster Response Time...

Accurate Airflow Management and Control is REQUIRED!

- Primary air flow transports the fuel to the boiler, it **MUST** operate on the correct curve to achieve good load response while at constant load, then “kicked” up when the boiler master requires a sudden fuel increase.
A Homogeneous Furnace Exit Flue Gas Matters

Again, Airflows MUST be Measured and Distributed Correctly

• HVT Testing Should be Completed to Evaluate Excess Oxygen Levels at Low Load

CO (ppm) Ports 1-12

Furnace Exit Gas Temperature

Oxygen (%) Ports 1-12

Excess Oxygen
Both Fuel and Air Balancing Influence Combustion

Often, burner air adjustments can be used to correct high CO in the upper furnace. But if fuel flow to individual burners is far above average, air sleeves or register adjustments cannot overcome the air/fuel imbalance.
Heat Warping from low load operation

Burner Cooling for burners out of service is still important!
If you have a spare mill, think of the burners!

Pre-Outage

Post-Outage
Burners can get destroyed while out of service

Or when coal contacts hot burner metal on a mill start-up
Sliding vs. Constant Pressure Operation

Sliding Pressure has a few basic effects on plant operation:

• At sustained low loads, sliding pressure permits higher steam temperatures.

• Better steam turbine efficiency because of higher steam temperatures.

• Rarely will it be beneficial for faster load response from lower load points!

• Sliding pressure assures better steam and metal temperatures for the steam turbine as long as load is held constant.

• Smooth steam temperature changes are important for turbine longevity.

• Sliding pressure usually harms load response from minimum loads.
Why Steam Temperatures are Improved at Low Loads with Sliding Pressure
Low Natural Gas Prices have Forced Utilities to Reduce Fuel Costs to Remain Competitive
• Boiler Conditions & Reliability are Affected if Care is Not Taken to Address the Inputs!

If co-firing w/ natural gas, the fuel and air must be in proportion for those burners that are being fired!

NOTE: Flame carryover into the superheater contributes to slagging, overheated metal temperatures and sometimes high carbon content in the flyash
Fuel Switching

Completely Changing Fuels Should be Taken Seriously!

- Pulverizer Performance Must Be Properly Evaluated and Optimized.
- HGI is just one factor!
Key Factors Needed to Attain Optimum Pulverizer Performance

- Individual fuel lines balanced by “Clean Air” test to within $\pm 2\%$ deviation from the mean or better.
- Fuel lines balanced by “Dirty Air” test using a dirty air velocity probe, to $\pm 5\%$ deviation from the mean or better.
- Fuel line fineness shall be 75% or more passing a 200 mesh screen. Particles remaining on 50 mesh shall be less than 0.1%.
- Primary air flow accurately measured and controlled within $\pm 2 - 3\%$.
- Pulverizer must be operating on proper air/fuel ramp
- Fuel line flows balanced to $\pm 10\%$ deviation from the mean or better.
Poor Coal Fineness often yields poor distribution

Good Fineness Creates a homogenous & balanced mixture & will produce a more homogenous mixture if mechanical synchronization is optimum and primary airflows repeatable.
Fuel line fineness shall be 75% or more passing a 200 mesh screen. 50 mesh particles shall be less than 0.1% on each of the fuel lines.

NOTE: Use 4 Sieves for best results!
Fuel Blending

Coal Ash Fusion Temperatures can Be Greatly Affected if the Wrong Blend eutectic of Fuels is Achieved!

<table>
<thead>
<tr>
<th>Melting temperatures of coal ash constituents</th>
</tr>
</thead>
<tbody>
<tr>
<td>FeO - FeS</td>
</tr>
<tr>
<td>FeO - Al₂O₃ - SiO₂</td>
</tr>
<tr>
<td>CaO - FeO</td>
</tr>
<tr>
<td>Na₂O - Al₂O₃ - 6SiO₂</td>
</tr>
<tr>
<td>Na₂SO₄ - CaSO₄</td>
</tr>
</tbody>
</table>

![Graph showing melting temperatures of coal ash constituents](image)

Acidic Content (%): SiO₂ + Al₂O₃ + TiO₂

Low Temperature
Co-Firing With Natural Gas

Co-Firing Can Be Successful and Efficient

- Combustion Air Flow to the Burners Must be Properly Metered to Ensure The Total Airflow is Correct for the Total Heat Input to the Burners, a compartmentalized windbox is helpful
- Heat Input to the Burners should Not Exceed Burner Design

<table>
<thead>
<tr>
<th>Burner Heat Input</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal Flow</td>
<td>lb/hr</td>
<td>84,850</td>
</tr>
<tr>
<td>Average Coal HHV</td>
<td>Btu/lb</td>
<td>12,056</td>
</tr>
<tr>
<td>Coal Heat Input</td>
<td>MMBtu/hr</td>
<td>1,023</td>
</tr>
<tr>
<td>Coal Heat Input per Burner</td>
<td>MMBtu/hr</td>
<td>170</td>
</tr>
<tr>
<td>Natural Gas Flow</td>
<td>kscfh</td>
<td>517</td>
</tr>
<tr>
<td>Natural Gas Btu (estimated)</td>
<td>Btu/cu. Ft</td>
<td>1,000</td>
</tr>
<tr>
<td>Natural Gas Heat Input</td>
<td>MMBtu/hr</td>
<td>517</td>
</tr>
<tr>
<td>Natural Gas Heat Input per Burner</td>
<td>MMBtu/hr</td>
<td>25</td>
</tr>
<tr>
<td>Landfill Gas Btu per Day</td>
<td>MMBtu</td>
<td>1,738</td>
</tr>
<tr>
<td>Landfill Gas Heat Input Per Burner</td>
<td>MMBtu/hr</td>
<td>18</td>
</tr>
<tr>
<td>Total Heat Input Per Burner w/ Nat. Gas</td>
<td>MMBtu/hr</td>
<td>195</td>
</tr>
<tr>
<td>Total Heat Input Per Burner w/ Nat. Gas and Landfill Gas</td>
<td>MMBtu/hr</td>
<td>213</td>
</tr>
<tr>
<td>Guarantee Burner Heat Input</td>
<td>MMBtu/hr</td>
<td>182.7</td>
</tr>
</tbody>
</table>

© STI, Storm Technologies, Inc. – All Rights Reserved
How Do We Quantify Air In Leakage?

- Oxygen rise from the furnace to the stack on a balanced draft boiler
 - Point by point traverses should be conducted
- Adverse affects:
 - Heat rate penalties
 - Increased auxiliary horsepower
 - Decreased combustion efficiency
 - Increased flue gas volume
 - Fan limitations
 - Reduced generation
Air In-Leakage and X-Ratio

- Over-Fire Airflow
- Combustion Airflow to Burners
- Combustion Airflow to Pulverizers
- Tempering Airflow to Pulverizers
- Combustion Airflow to the Furnace
- Boiler Exit Flue Gas (720° F)
- Air Heaters
- Air Heater Leakage Paths: Radial Seals, Axial, Bypass, Circumferential
- APH Flue Gas Exit & APH Leakage Air
- Force Draft Fans

© STI, Storm Technologies, Inc. – All Rights Reserved
An Old, but useful tool in Reporting/Quantifying Air In-Leakage Amounts

- Excess Air
- Theoretical Combustion Air
- Stoichiometry

115% Theoretical Air At Furnace

Potentially, up to 150% Theoretical Air At CEM’s

Unburned Loss % = \(1 - \frac{H_a}{C} \times \frac{H_a}{C_{st}}\) x 14500 Btu/lb.

Where:
- \(H_a/C\) is from gas analysis
- \(H_a/C\) Btu/lb. is from coal analysis
“Low Hanging Fruit” Opportunities

- Airflow Measurement and Control
- Fix Leakage
- Mill Fineness
- Mill Fuel Distribution
- Burner Mechanical Tolerances

<table>
<thead>
<tr>
<th>Controllable Variable Quantities</th>
<th>Reduction of Air In-Leakage</th>
<th>Reduction of Dry Gas Loss</th>
<th>Reduction of Coal Rejects</th>
<th>Reduction of Air Heater Leakage</th>
<th>Reduction of Carbon in Ash</th>
<th>Reduction of De-Superheating Spray Water Flows</th>
<th>Achieve By:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Interrelated</td>
<td></td>
<td></td>
<td></td>
<td>240 Btu/kWh</td>
<td>100 Btu/kWh</td>
<td>- Primary Airflow Optimization</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60 Btu/kWh</td>
<td>- Pulverizer Optimization and Improved</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fuel Line Balanced</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>500 Btu/kWh</td>
<td></td>
</tr>
</tbody>
</table>
Residence time is FIXED!

Secondary combustion, as illustrated here, contributes to poor reliability, efficiency, capacity, and can increase NO\textsubscript{X}, CO and flyash LOI.

Unacceptable combustion with products of combustion reaching the superheater

NOTE: Flame carryover into the superheater contributes to slagging, overheated metal temperatures and sometimes high carbon content in the flyash.
Thank You!

Richard F. (Dick) Storm, PE
Senior Consultant
Storm Technologies, Inc.

Contact info:

www.stormeng.com
Office: 704-983-2040
Richard.Storm@stormeng.com