

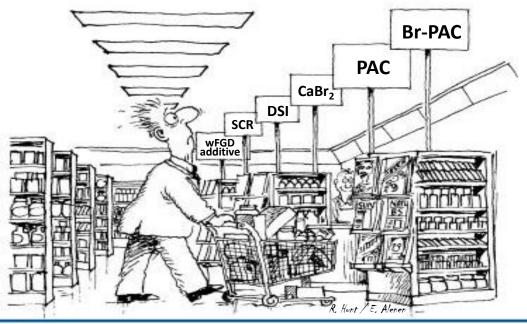
How to Guarantee the Lowest Cost Activated Carbon Treatment Solution

McIlvaine Hot Topic Hour 2-28-2013

"Carbon Testing 101"

- A step by step discussion of how to design a test plan for *your* plant
- Additional variables to consider, and how to include them
- Actual case studies
- How to apply test results to a bid to ensure you arrive at the most cost-effective solution

Designing a Test Plan...


- Clearly define your goals and success criteria – MATS
 - Avoid a baghouse installation
 - Integrate SO₂ controls with ACI
 - Enable a fuel switch
 - Cost reduction
 - Ash sales

Designing a Test Plan...

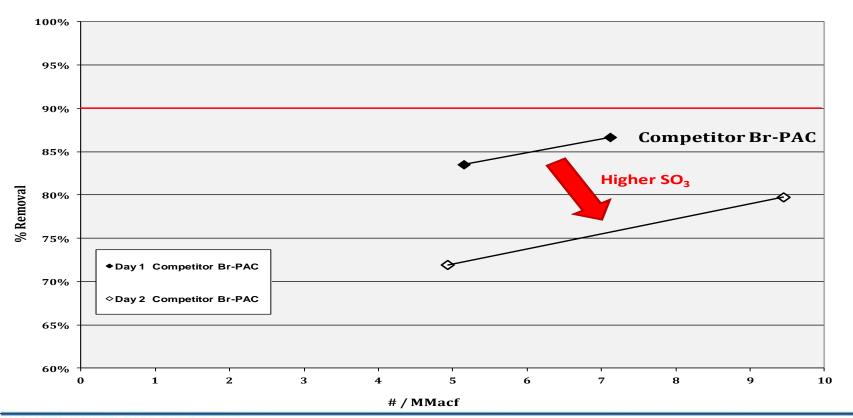
- Assess your flue gas composition and collect any relevant existing data.
- Determine the technologies to be tested.
 - Carbon, brominated carbon, CaBr₂, DSI, wFGD additives ...

Designing a Test Plan...

- Designate an *experienced* program manager
- Solicit vendors
- Draft a schedule and test plan and include contingency days
- Evaluate data (both during and after testing)

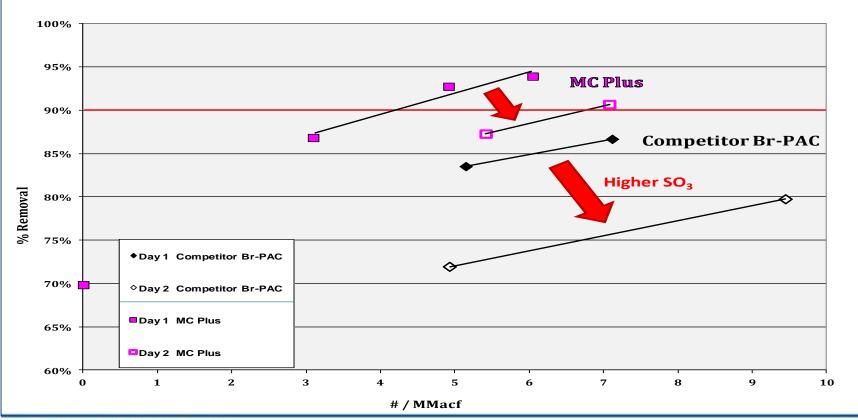
Additional Considerations...

- Opacity/PM include stack testing?
- ACI injection points
- ACI testing at full and low load?
- SO₃ monitoring
- Silo vs. sack testing
- Ash sampling and testing
- Hg measurements
 - Traps vs. CEMs vs. coal analyses
 - Outlet **and** inlet

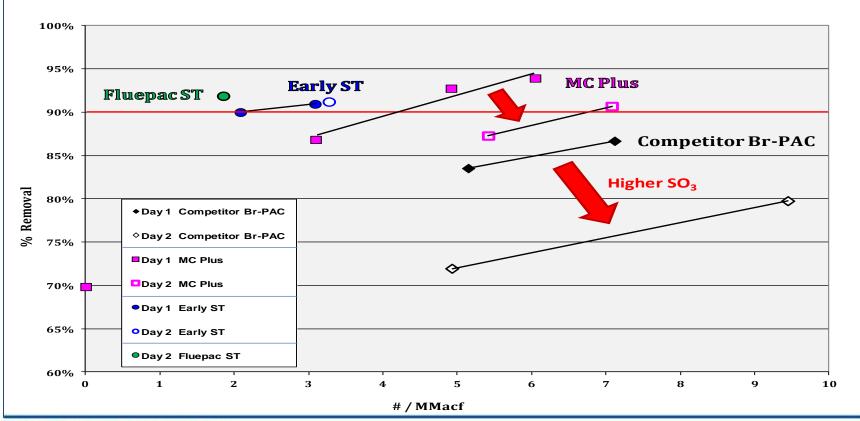

- 600 MW PRB-fired unit with a baghouse
- Goals of reducing treatment costs and preserving fly ash quality

Product	# / MMacf to 90%	# / hr
FLUEPAC [®] MC Plus	0.81	130.2
FLUEPAC [®] MC Plus	0.77	123.9
Competitor advanced product 1	0.79	126.0
Competitor advanced product 2	0.83	132.9
FLUEPAC [®] MC with 1.2 gph CaBr ₂	0.39	67.0
FLUEPAC [®] MC Maxx with 1.2 gph CaBr ₂	0.14	24.0

Learned that the ACI system would need a much smaller feeder, and only 1 silo instead of 2



- Unit with an ESP firing a bituminous/PRB blend
- Goal of 90% Hg removal, without DSI for SO₃ control



- Unit with an ESP firing a bituminous/PRB blend.
- Goal of 90% Hg removal, without DSI for SO₃ control.

- Unit with an ESP firing a bituminous/PRB blend.
- Goal of 90% Hg removal, without DSI for SO₃ control.

Applying Your Results to the Bid...

- ACI is not a commodity product. It is essential to look beyond simple \$\$/lb pricing.
- Normalize your results for each product by feed rate to obtain a Removal Efficiency Index (REI).
- Calculate freight costs using REI.
- Calculate costs of additional products such as CaBr₂ or DSI.
- Factor in ash sales or disposal where appropriate.
- Compute the total treatment cost.

Applying Your Results to the Bid...

Fictional Plant: 500 MW, PRB, SCR, ESP

REI Index	ACI Pounds/Hour	Boiler Additive (gal/ho	ur)	
Product A	500			
Product B	225	1.5		
Product C	250			
Product Name	REI	Annual Estimate (LBS)	Price Per Pound	Total Carbon Cost
Product A	500	4380000	\$0.70	\$3,066,000
Product B	225	1971000	\$1.00	\$1,971,000
Product C	250	2190000	\$1.50	\$3,285,000
Product Name	Pounds/TL	Trucks/YR	Freight Rate	Total Freight Cost
Product A	40,000	110	\$2,500	\$273,750
Product B	44,000	45	\$3,000	\$134,386
Product C	46,000	48	\$2,750	\$130,924
Product Name	Boiler Additive	gal/year	Cost/gal	Total Boiler Additive Cost
Product A	NO	0	\$0	\$0
Product B	YES	13140	\$10	\$131,400
Product C	No	0	\$0	\$0
Product Name	Salable Fly Ash	Tons/year	Price or Cost/Ton	Annual Rev/Exp
Product A	NO	100,000	(\$5)	(\$500,000)
Product B	YES	100,000	\$10	\$1,000,000
Product C	YES	100,000	\$10	\$1,000,000
Product Name	Annual Cost for Pro	oduct		
Product A	\$3,839,750			
Product B	\$1,236,786			
Product C	\$2,415,924			

<u>Summary</u>

- A well executed ACI test is well worth the investment.
- Don't rush into a contract without adequate testing. Allow yourself the time to test. And maybe even to test again....
- Activated carbon is not a commodity product. Look beyond simple \$\$/Ib and focus on the big picture.

Acknowledgements

 Coauthors Michelle D'Amico and Michael Pealer at Calgon Carbon

• Element 1 Engineering and Apogee Scientific