

Holistic Impacts of NOx Control Technologies on Boiler Equipment and Hg/SO₃ Emissions

Richard M. Himes, P.E. rhimes@epri.com

McIlvaine Hot Topic Hour
NOx Control – Low NOx Technology Update

February 23, 2012

Background Holistic Emissions Impacts

- NOx reduction approach must be made in context of coal burned, potential impacts on other pollutants, and overall unit performance
- Need to quantify tradeoffs
 - Goal of minimizing costs while complying with regulatory framework
 - Cannot operate combustion system in isolation of post combustion pollution control devices
- Research being conducted to evaluate potential impacts from combustion operation on post combustion systems

Combustion modifications can affect post combustion systems

Boiler / SCR Optimization

Boiler / SCR Optimization Example

- Two different coals
- Two boiler stoichiometric ratios (different NOx levels)

Coal Properties	Low Sulfur Bituminous	High Sulfur Bituminous				
Proximate Analysis (%wt, dry)						
Moisture	-	-				
Volatiles	36.04	39.04				
Fixed Carbon	52.38	50.98				
Ash	10.45	9.98				
Sulfur	1.13	3.25				
Btu/lb	13430	11645				
Ultimate Analysis (% wt, dry)						
Carbon	76.35	74.84				
Hydrogen	5.04	4.52				
Nitrogen	1.54	1.55				
Chlorine	0.01	0.27				
Oxygen	5.48 5.6					

Simple Corrosion Predictor Model Predicted Fireside Wastage Rates

Predicted corrosion rate of higher sulfur coal increases by factor of 3

Predicted Mercury Oxidation Results

Case	Case 1	Case 2	Case 3	Case 4
Fuel	Low Sulfur Bit	Low Sulfur Bit	High Sulfur Bit	High Sulfur Bit
Staging	Υ	Ν	Υ	N
SCR inlet	0.32 lb/MBtu	0.40 lb/MBtu	0.27 lb/MBtu	0.34 lb/MBtu
Requierd deNOx	70%	75%	65%	72%
SCR Hg Oxidation	82%	81%	94%	93.50%

Summary

- Pollutant emission regulations require multi-pollutant considerations
 - Trade-offs can exist in system performance and cost impacts with different operating scenarios
 - Additional information required to enable optimization
- EPRI working to quantify impacts and potential costs associated with different operating scenarios
 - Conducting field tests to quantify trade-offs
 - Program 71 Boiler Performance and NOx Control
 - Program 73 Post Combustion NOx Control
 - Seeking/evaluating potential host sites

For more information contact Rick Himes at rhimes@epri.com

Together...Shaping the Future of Electricity