Power Plant Pumps

McIlvaine Company
Hot Topic Hour
August 30, 2012
Presentation Overview

• Pump sales sold into power gen are second only to pumps in Water & Wastewater

• According to McIlvaine “Pumps World Market” report, the total pump market for power was $2.6-B in 2011

• This presentation covers pumps in coal fired power plants, primarily, but is largely applicable to nuclear and combined cycle, as well.
 – Nuclear would not include pumps for flue gas scrubbing systems and ash and gypsum dewatering, or startup fuel pumps, among several others
 – Gas turbine combined cycle would not include ash dewatering, and certain components in scrubbing systems, among several others
Major Pump Systems

• For discussion purposes, a power plant can be segmented into two basic systems in terms of pump applications
 – **Primary systems** (prime movers of water in the water/steam cycle), and
 – **Secondary systems** (fuel and chemical transfer and injection, FGD slurry pumping, de-watering, service water, waste water, lubrication pumps, and other ancillary systems)
Primary Pumps
Primary Systems

• Primary pump systems include
 – Boiler feed pumps (primary and startup)
 – Condensate pump
 – Cooling water circulation pump
 – Cooling water make-up pump
 – Heater drain pumps
Primary Pumps

• Boiler Feed Pumps
 – High pressure, high flow barrel type multi-stage centrifugal pumps rated ~ 5000 gpm and 2400 psi for major utility power plant systems (pressures will vary for subcritical vs. supercritical)

• Condensate Pumps
 – High flow centrifugal pumps rated ~5000 gpm to move condensate from the condenser hot well to a de-aerator and back to the feed water stream ahead of the boiler.
Primary Pumps

- **Cooling Water Systems**
 - Hyperboloid (natural draft)
 - Forced or Induced Draft
 - Once-through

- **Purpose**
 - To remove heat from cooling water that has been circulated through the condenser system.
Primary Pumps

• Once-Through systems
 – Pump surface water through cooling unit and directly back to source (lake, river, or ocean)

• Loop Systems
 – Circulating pumps
 • Large centrifugals rated 100,000 gpm or more. Total coolant flow more than 200,000 gpm for a 400MW plant.
 – Makeup water pumps
 • Large centrifugals rated 5,000 gpm. Makeup is typically 2% to 3% of total flow, and is required to replace water lost to windage, evaporation, and blowdown.

McIlvaine Company
Primary Pumps

Cooling Water Schematic

Evaporation plus drift

Heat Exchanger

Make Up Water

Treatment Chemicals

Blowdown
Secondary Pumps
Secondary Pumping Systems

• Secondary pumps include
 – Chemical feed pumps
 – Chemical transfer pumps
 – Fuel transfer pumps
 – Fuel injection pumps
 – Slurry pumps and de-watering pumps
 – Lubrication pumps
 – Service water pumps, fire service pumps, others
Secondary Pump Schematic (hyperlink)
Secondary Pumps

• **Metering pumps for boiler treatment and cooling water treatment**
 – Typically diaphragm metering pumps rated < 20 gph and < 600 psi. Solenoid operated.
 • Ammonia (ph control), hydrazine (oxygen scavenging), Phosphate (hardness), other chemicals
 – A complete set of injection pumps (frequently skid or panel mounted) is provided for each boiler
 – Total injection pumps for water treatment is on the order of 24 per plant, including backups for these critical front-end systems.
Secondary Pumps

Boiler Feedwater Treatment

<table>
<thead>
<tr>
<th>Broad Function</th>
<th>Specific Function</th>
<th>Chemical Agent</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxygen Scavenger</td>
<td>Sodium Sulfite</td>
<td>Most commonly used for boilers up to 35 Bar (500 psi)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hydrazine</td>
<td>Rarely used except occasionally for high pressure boilers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diethyldrioxamine (DEHA)</td>
<td>Organic - used for high pressure boilers up to 85 Bar (1200 psi)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methylethylketoxime (MEKO)</td>
<td>Organic - used for high pressure boilers up to 85 Bar (1200 psi)</td>
<td></td>
</tr>
<tr>
<td>Neutralizing Amine (pH Control)</td>
<td>Morpholine</td>
<td>For injection in feedwater or steam header to neutralize carbonic acid</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diethyleneiminethanol (DEAE)</td>
<td>For injection in feedwater or steam header to neutralize carbonic acid</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cyclohexylamine</td>
<td>For injection in feedwater or steam header to neutralize carbonic acid</td>
<td></td>
</tr>
<tr>
<td>Corrosion Inhibitor</td>
<td>Octadecylamine (ODA)</td>
<td>Usually injected in steam header to protect condensate piping</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethoxylated soya amine (ESA)</td>
<td>Usually injected in steam header to protect condensate piping</td>
<td></td>
</tr>
<tr>
<td>Passivating Agent (Anodic Inhibitor)</td>
<td>Nitrite</td>
<td>For use with low pressure boilers below 20 Bar (300 psi)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chromate</td>
<td>Not commonly used for environmental/health reasons</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Molybdate</td>
<td>Considered more environmentally acceptable than chromate or zinc</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Orthophosphate</td>
<td>Commonly used for passivating metal surfaces</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diethyldrioxamine (DEHA)</td>
<td>For injection in feed water to promote protective oxide layer</td>
<td></td>
</tr>
<tr>
<td>1st-stage treatment</td>
<td>Lime (calcium hydroxide)</td>
<td>Added in the clarifier stage to precipitate calcium, magnesium, silica</td>
<td></td>
</tr>
<tr>
<td>Precipitate soft sludge</td>
<td>Phosphate (Mono, di- or trisodium phosphate)</td>
<td>Injected after feed pump to precipitate calcium and magnesium in soft sludge removed in boiler blowdown</td>
<td></td>
</tr>
<tr>
<td>Scale Inhibitor</td>
<td>Chelates [Nitroltriacetic acid (NTA) and ethylenediamine tetaacetic acid (EDTA)]</td>
<td>Injected after feed pump. Removes hardness by forming soluble compounds that are purged in boiler blowdown</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Polymers</td>
<td>Injected after feed pump. Polymers used with chelates for maximum effectiveness</td>
<td></td>
</tr>
</tbody>
</table>
Secondary Pumps

Cooling Water Treatment

<table>
<thead>
<tr>
<th>Broad Function</th>
<th>Specific Function</th>
<th>Chemical Agent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biocide</td>
<td>Disinfection</td>
<td>Chlorine/bromine</td>
</tr>
<tr>
<td>Corrosion Inhibitor</td>
<td>pH Control</td>
<td>Sulfuric acid</td>
</tr>
<tr>
<td></td>
<td>Film-forming inhibitor</td>
<td>Ortho/polyphosphate</td>
</tr>
<tr>
<td>Scale Inhibitor</td>
<td>Prevent insoluble precipitates</td>
<td>Phosphonate</td>
</tr>
<tr>
<td></td>
<td>Prevent insoluble precipitates</td>
<td>Polymers</td>
</tr>
</tbody>
</table>
Secondary Pumps

Transfer Pumps from bulk storage to day tanks (chemicals & fuels)
Transfer Pump Systems

Outdoor Storage Tanks

Transfer Pump servicing outside tanks

Plastic valves for pump isolation (5) valves shown

Plastic valves for tank fill and drain lines.

McIlvaine Company
Secondary Pumps - Lubrication

• Main turbine
 – Skid systems for cooling and filtration
 • Gear or progressive cavity pumps
• Other rotating equipment
 – Coal & limestone pulverizers, conveyors
 • Gear-type pd pumps.
• Transformers
 – Main step up transformer
 • Load tap changers with gear-type pd pumps
Secondary Pumps- Fire Service

• Fire Service pumps and other service water pumps for equipment cooling, equipment washdown, etc
Summary of Secondary Pumps

Power Plant Secondary Pumping Systems

Information abstracted from the Pump Handbook by Igor J. Karassik, Joseph P. Messina, Paul Cooper, and Charles C. Heald

Chemical Feed Systems
- Amine pumps
- Hydrazine pumps
- Phosphate pumps
- Caustic feed pumps
- Acid feed pumps
- Ammonia pumps
- Regeneration waste pumps
- Demineralizer pumps
- Neutralizing metering pumps
- Acid bulk pumps
- Caustic bulk pumps
- Inlet and effluent de-mineralizer waste tank pumps

HVAC System
- Hot water circulating pumps
- Chilled water pumps

Service Water System
- Service water pumps
- Air preheater wash pumps
- Cooling water booster pumps
- Primary air heating coil condensate return pump
- Sump pump
- Closed cooling water system pump

Fuel Oil System
- Fuel oil transfer pumps
- Secondary fuel oil pumps
- Secondary fuel oil heater drip pumps
- Ignitor oil pumps
- Auxiliary boiler fuel pump
- Warm-up oil pumps
- Hi-temperature oil circulating pumps
- Low-temperature oil circulating pumps
- Distillate oil unloading pump
- Fuel oil additive unloading pump
- Fuel oil additive transfer pump
- Fuel oil additive metering pump
- Fuel oil hose drain pump

Lubrication Oil System
- Lubricating oil transfer pumps
- Starting oil pump
- Wash oil pump
- Emergency oil pump

Fire Protection System
- Fire pumps
- Jockey pumps
- Foam proportioning pump

Miscellaneous Pumps
- Ash sluice pumps
- Slurry pumps
- Hydrostatic pressure test pump
- Transfer pumps
Summary
Overview

• Primary Pumping Systems
 – Feed water pumps, condensate pumps, cooling water pumps

• Secondary Pumping Systems
 – Chemical feed pumps
 – Chemical and fuel transfer pumps
 – Slurry and sludge pumps, de-watering pumps
 – Lubricating system pumps for turbines, conveyers, pulverizers, and other rotating equipment
 – Service water pumps, fire service pumps
 – Drainage pumps and other misc pumps
Major Pump Types

• Most pumps in a power plant are centrifugal, which mirrors the general pump market.

• Other types are used for specific applications:
 – AODD or lobe (slurry and sludge)
 – Diaphragm, peristaltic, progressive cavity (chemical metering)
 – Vane, progressive cavity, screw (fuel handling)
 – Others
Continued Growth Market

• The most active regions for new power plant construction are China and India. In China, despite the recent economic cool-off, it is estimated that approximately 1.0 to 1.5 new power plants are brought on line per week.
• Japan can be expected to engage in new power plant construction as it moves to de-commission its fleet of nuclear power plants
• Germany and Italy could likewise see power plant construction as they proceed with de-commissioning nuclear power plants
• The United States and western Europe continue to build “latent” demand for new power plants to replace the aging fleet of existing coal and nuclear plants, currently on life extension due to financial and environmental roadblocks to new construction.