Boiler Optimization for Emissions, Efficiency and Availability

McIvaine Hot Topic Webinar September 27th, 2012

Today's Fossil Generation Challenges

- Unprecedented regulatory uncertainty
 - Utility MACT
 - Federal CO₂ regulation
 - Subsequent Clean Air Act Requirements (NAAQS, Regional Haze, etc.)
 - CSAPR???
- Traditional and new sources of market volatility
 - Demand uncertainty (fighting the last war)
 - Fuel and allowance price volatility
 - Technological uncertainties
- All add to challenges bringing new capacity on-line
- CCCTs & renewables force new operating profiles
- Aging assets operating well beyond design life
- Graying work-force and skills shortage

Do more with less and manage the risks!

MATS (aka Utility MACT) Rule

- On February 16, 2012, EPA published the Mercury and Toxics Standards (MATS) rule
- MATS establishes national emissions limitations and work practice standards for certain hazardous air pollutants (HAP) emitted from coal- and oil-fired electric utility steam generating units
- The rule will result in about a 90% reduction from uncontrolled power plant emissions of mercury, nine other toxic metals, and three acid gases, all listed as hazardous air pollutants in the 1990 Clean Air Act Amendments
- The rule affects about 1,100 coal-fired and 300 oil-fired units
- Compliance with the rule is required for existing units by April 16, 2015
- For existing units, the rule specifies both heat input-based emission limits (lb/TBtu) and electrical output-based limits
 (lb/GWh) for Hg.

"Best Practices" Requirements

- The rule creates a variety of new work practices standards
- Units must burn natural gas or distillate oil during periods of start-up.
- Emissions control systems must be operated during periods of start-up and shutdown.
- Optimization of NOx and CO, combined with "best practices" efforts to maximize fuel efficiency must be demonstrated and documented for the EPA
 - Intended to minimize output of non-measurable HAPs (e.g. Dioxin, Fiurin, etc.
 - Optimization of NOx and CO is required using prescribed technologies
 - All boilers subject to requirements for "tune-ups" and demonstration of best practices for boiler efficiency

- Neural network optimization is explicitly addressed by MATS in three ways
 - Neural network optimization systems qualify for the requirement in the rule for "optimizing NOx and CO."
 - Units with optimizers can defer the initial EPA "best practices" requirement by a year.
 - Units with optimizers also qualify for less frequent subsequent evaluations to every 48 months.
- These provisions provide further evidence that the US EPA recognizes the value of optimization with respect to regulatory objectives relating to emissions and efficiency

Longer-Term Strategic Implications for Current and Emerging Emissions Regulation

- Minimize capital commitments while emerging regulatory changes make clear which units can survive and which cannot
- Inform future capital decisions for surviving units with better understanding of true (optimal) baseline performance
- Better equip surviving units to cope with:
 - Greater demands on existing emissions control hardware
 - Process changes and variable costs for new emissions hardware
 - Operational profiles associated with fundamentally altered markets
 - Influx of renewables with intermittent generation output profiles
 - Reduced capacity factor due to more efficient newer capacity coming on-line
 - Problems associated with aging assets and changes from design conditions
 - Greater operational challenges with fewer skilled operators and engineers
 - Ever-greater needs to "push the envelope" in order to "stay in the money"

Integration of Emissions & Efficiency Silos

- Emissions and efficiency used to be addressed by different "silos" within power generation organizations
- Efficiency efforts often took back-seat to emissions
 - Regulatory "pass-through" clauses
- Fuel costs often handled fleet-wide
- CO₂ has brought efficiency and emissions together
- Reagent costs for NOx create large new "non-fuel" O&M cost

Bottom Line: Must integrate management of emissions, fuel, reagent costs and tradeoffs between them

NeuCo's ProcessLink® Platform

- ProcessLink is the technology platform upon which all NeuCo optimizers are built:
 - Employs multiple modeling and optimization techniques to provide best hybrid asset optimization solutions
 - Integrates disparate data sources and knowledge, enabling objective-driven performance across units, plants or an entire fleet
 - Integrated modeling and optimization engine relates process behavior to global objectives
 - Supports optimizer integration and action coordination
 - Process behavior and equipment health issues surfaced though comprehensive alerts
 - Flexible GUIs, portals, and automated reporting

Closed-loop Systems Control & Optimization

Asset Optimization with ProcessLink®

- Maximize Availability/Reliability
 - Predictive analytics for equipment health
 - Early warning for impending failures
 - Minimizing unnecessary outages
 - Better use of planned down-time
 - Reduced tube leak outages
- Minimize Operating Costs
 - Continuous heat rate minimization
 - Detection of equipment problems with efficiency impacts
 - Minimize reagent usage
- Optimize Emissions Control (NOx, CO, Opacity, CO₂)
 - Avoid exceedances and de-rates
 - Exploit allowance trading strategies
 - Optimize trade-offs between emissions and other objectives
 - Get ahead of the curve with CO₂ reductions

- Reduced Boiler Tube Leak Outages
 - Less unnecessary cleaning (SootOpt)
 - Avoided thermal stress (SootOpt & C'Opt)
- Avoided Slagging/Fouling De-Rates & Outages
 - Pro-active cleaning for vulnerable surfaces (SootOpt)
 - Improved stoichiometry control (CombustionOpt)
 - Tighter control of gas path temperatures (SootOpt & C'Opt)
 - Reduced ammonium bi-sulfate air heater pluggage (SootOpt & C'Opt)
- Fewer Equipment Failure Outages
 - Proactive detection/diagnosis of impending failures (M'Opt/P'Opt)
 - Better knowledge of equipment degradation states (M'Opt/P'Opt)
 - Generally improved situational awareness (all products & alerts)

CombustionOpt[®]

- Provides real-time closed-loop optimization of fuel and air biases
- Using:
 - Model Predictive Control (MPC)
 - Neural Networks
 - Design of Experiments (direct search)
 - Expert Rules
- To Improve:
 - NOx
 - CO
 - Heat rate
 - Steam temps
 - Opacity
 - Reagent utilization
 - Constraint performance
 (Mill Dp's, Fan Amps, O2 split)

Session Documer	ncs Debug	Helb											2	_1	
🔶 r 🔶 r 🔏 r 🍅 💩 r				Unit 3: CombustionOpt Home							Γ	11/21/2008 01:32 PM (1 day)			
Optimization Al	erts									Optimization	Bench	ımarks		_	
😫 🔮 🔍 🚱 Issue		A	Actual Target III ~ NDx Svngs (Fuel Svngs (Relative Impa					Benefits (month)							
	C'Opt MVs P	artially Enabl	ed 0.	7	1 !!!	"	8,720	58,334				Achieved	Achievable		
										Objectives	Units	(vs. Baseline)	(vs. Actual)		
										Fuel	BtuikWh	297.73	198.69		
										Fuel	1	224,112.09	150,094.01		
										NOX	Ib/MBtu	0.01	0.01		
										NOx			14,448.01		
										NOX	3	24,283.09	14,448.01		
						~				O2 Split Sum of Fdr Bia		7.81	-0.36 0.39		
	-	_	~	_		~~~				Sum of Aux B	i unitless	-0.01	0.03		
12:21:00 12	2:44:20 13	8:07:40 13	31:00 13	:54:2	12:49:	00 13	3:02:40 13:16:2		13:43:40						
		-		_					08 01:23:06 PM						
MV Name ALIXIDPR AA SEL	Pre-Move 3.496	Post-Move 3.371	Delta Mov	•	Objectives	Ac 59.	tual Predicted 93 57.87	-	Delta Cost 💪						
AUXDPR AB SEL	-4.186	-4.061		11	RH Spray Flo Mill 3F dP (in	59.		< 25 (klb/h < 7.5 (inH							
AUXDPR BC SEL	1.059	0.996			Mill 3C dP (in	7.9		< 7.5 (inH		Limits (%Violations)					
AUXDPR CD SEL	2.233	2.296		-	Mill 3E dP (in	7.4		< 7.5 (inH			·				
AUKDPR DE SEL	-0.857	-0.859			Sum of Fdr Bi	0.0	02 0.01	0		Opacity	percen	_	-33.53		
AUXDPR EF SEL	-2.374	-2.499			IDF 3A Amps	431	1.8 430.5	< 445 (A)		021,2	percent	t -3.81	4.7		
AUXDPR FF SEL	0.652	0.777			Sum of Aux B	0.0	02 0.02	0		023,4	percent	t 0	0		
	-8	-8			02 Split (perc	-0.		0		RH SF	klb/h	9.63	14.65		
FEEDER A SEL BI	-1.226	-1.351			Mill 3A dP (in	7.1		< 7.5 (inH					_		
FEEDER B SEL BI		0.303			Mill 3B dP (in	5.3	39 5.39	< 7.5 (inH		MII 3A	inH20	16.35	-0.2		
	0.365	5			023&4 (per	25	97 2.97	> 2.5 (perc			inH2O	0.14	n	- 1	

CombustionOpt Optimization

The Optimization Standard™

Proprietary and Confidential

Ready

Combining Neural with MPC

In addition to Direct Search and NN & MPC models, NeuCo may use Expert Rules to:

- Calculate MV constraints
- Use reactive override under special conditions (e.g., high CO)
- Exclude model training data under certain conditions
- Define models and/or objectives specific to mill combinations
- Switch entire constraint and/or objective profiles

- All CombustionOpt installations have coal variability
- Many have fuel blending (PRB/Bituminous/Lignite, etc.)
- In most cases there is no real-time fuel quality measurement
- In some cases manual inputs used, but not many
- CombustionOpt's inputs infer fuel quality from many data sources
- Optimization uses directional as opposed to absolute process knowledge
- On-line learning and model validation finds models best-suited for current fuel blend from past history

DCS Integration

NeuCo

- Provides real-time closed-loop optimization of soot cleaning equipment
- Using:
 - Expert Rules
 - Neural Networks
- To Improve:
 - Sootblowing consistency
 - Unnecessary sootblowing
 - Steam temps
 - Sprays
 - Leverage on heat rate

Boiler Cleanliness Optimization

The Optimization Standard™

Overview: How SootOpt Works

Zone Selection

Rules-based: Fuzzy Heuristic First Principles Operating History

Blower Selection

Model-Prediction- and/or Rules-Based: Optimal Blower Start Operating History Effectiveness

NeuCo

Zones are defined according to plant layout and sootblower media piping

One Blower Selection Module per Zone

Loading page...

ProcessLink								
🕴 Session Documents I	Debug <u>H</u> elp							
← • → ⑥ • ▲ • ○	Unit	t 3: SootOp	t Analysis	•	▼ ⑧ ▲ → ▶ ▶ № 08/27/2008 01:28:00			
Overview Tools Models	Optimization							
Demystifier Blower Selection	on Zone Selection	Zone Eligibility	Rule Clauses Util	ization				
Goal	Zone	pray flo	🗙 SH temp high	🗙 RH temp high	🗙 SH temp low	✓ RH temp low	✓ RH temp bel	🗙 APH 3A DP
Lower RH Steam Temp	RH_Platen			✓				
Lower RH Steam Temp	RH_Furnace			✓				
Reduce APH 3A Gas In Temp	SH_Convection		×					
Reduce APH 3A Gas In Temp	SH_Economizer		×					
Reduce APH 3A Gas In Temp	SH_Platen				×			
Reduce APH 3A Gas In Temp	SH_Furnace				×			
Raise RH Steam Temp	RH_Convection					✓		
Raise RH Steam Temp	RH_Economizer					✓		
Raise SH Steam Temp	SH_Convection				 ✓ 			
Raise SH Steam Temp	SH_Economizer				 ✓ 			
Lower SH Steam Temp	SH_Furnace							
Lower SH Steam Temp	SH_Platen		✓					
Reduce APH 3B Gas In Temp	RH_Furnace					×	1	
Reduce APH 3B Gas In Temp	RH_Platen					×	1	
Reduce APH 3B Gas In Temp	RH_Convection						×	1
Reduce APH 3B Gas In Temp	RH_Economizer						×	1
Limit Idle Time SH Furn	SH_Furnace				×			
Limit Idle Time SH Platen	SH_Platen				×			
Limit Idle Time SH Conv	RH_Convection		×					
Limit Idle Time SH Econ	SH_Economizer		×					
Limit Idle Time RH Furn	RH_Furnace					×		
Limit Idle Time RH Platen	RH_Platen					×		
Limit Idle Time RH Conv	RH_Convection						~	1

Ready

NRG Texas Limestone Generating Station

- T-fired boiler 913 MW firing Lignite and PRB
- Ten fuel elevations equipped with a low-NOx burner/over-fire air system
- Cold-side ESP and wet
 FGD
- DCS control system is a Bailey Infi-90

<

- CombustionOpt on coal-fired units for NOx reduction
 - Spruce: 546 MW CE t-fired w/Ovation DCS: Installation 2001
 - Deely: 2 x 446 MW CE t-fired w/Honeywell DCS: Installation 2004
- Multivariate predictive control added in 2007 for:
 - Explicit steam temperature control
 - Minimize attemperation sprays
 - Incremental heat rate and NOx reduction
- SootOpt added in 2010/2011 for availability/efficiency

J.K. Spruce Power Plant

- Calaveras Power Plant Complex, South East of San Antonio, TX
- J.K. Spruce 1 commissioned in 1990
- 600 MW Alstom-CE T-fired units
- Emerson Ovation DCS
- Spruce 2 commissioned 2011: 750 MW CE T-fired boiler with SCR

Analysis of Integrated BoilerOpt Benefits at JK Spruce Unit 1

JK Spruce 1 BoilerOpt Benefits Summary April 2011 Analysis

- Heat Rate improvement of 0.5-1.0%
- Losses Boiler Efficiency of 0.13-0.78%
- NOx reduction of 4-8%
- Improved control of
 - O2 Average Minimum and Balance
 - APHGIT Max and Balance
 - SH and RH Sprays and Balance
 - SH and RH Temps and Balance
- Reduction in Blower Operations
 - Average 20%
 - No economizer tube leaks since SootOpt installed

BoilerOpt Impact on Spruce 1 NOx

BoilerOpt Impact on Spruce 1 Heat Rate

BoilerOpt Impact on Spruce 1 O₂ Average

Spruce 1 BoilerOpt KPI Summary

Spruce Unit 1						
KPI	Units	OFF	ON	Delta (ON - OFF)	Delta (%)	+/-
Gross MW	MW	571.15	564.57			
Heat Rate	Btu/kWh	9661.32	9556.74	-104.58	-1.08%	1
Blr Eff	%	83.99	84.77	0.78	0.93%	1
NOx	#/MMBtu	0.127	0.121	-0.006	-4.72%	1
СО	ppm	107.06	123.06	16	14.94%	×
O2 Avg	%	2.277	1.912	-0.365	-16.03%	1
RH Temp E	degF	1003.64	1003.88	0.24	0.02%	1
RH Temp W	degF	1002.96	1003.33	0.37	0.04%	1
RH Spray	klb/h	91.43	87.54	-3.89	-4.25%	1
SH Temp E	degF	1003.26	1004.12	0.86	0.09%	1
SH Temp W	degF	1000.16	1003.84	3.68	0.37%	4
SH Spray	klb/h	14.9	21.89	6.99	46.91%	×

- Xcel SPS decided to adopt boiler optimization software (fuel-air and heat transfer components)
- Tested NeuCo's BoilerOpt[®] system at Tolk station early-mid 2009
- Applied to Harrington Unit 3 in October 2009
- Rolled out to Harrington Unit 2 and Unit 1
- Sootblowing optimization on Unit 1 was last component to be completed

BoilerOpt at Xcel Harrington

- Units 1, 2 and 3 similar units:
 - CE T-Fired boilers
 - 360 MW each
 - Often on AGC between 180 and 360
 - 5 Pulverizers
 - LNBs, CCOFA and SOFA
 - Foxboro I/A DCS
- Baghouses on U2 & U3
- ESP on U1

Harrington 3 Long-Term Trends

The Optimization Standard[®]

- NOx reductions 10-12%
- Improved consistency of operations both in Combustion and Sootblowing domains
 - Better balanced process, temps, sprays, CEMS, O2, CO
 - Fewer IR operations
 - Able to move load around with wind without CEMS penalty
 - More insight and awareness into what's going
 - Optimizers provide the tools to effect change in complex situation
 - Continuing to see improvement

Tolk Blower Count Trends

Proprietary and Confidential

The Optimization Standard™

- Operators have less to worry about
 - Takes the right actions, consistently
- Changing MW profile not a problem
- SH & RH temps better balanced
- Attemperation sprays significantly reduced
- Air Preheater gas inlet temps significantly reduced
- Boiler Efficiency increased

Continuous Improvement Xcel Tolk example

Using new knowledge

- After reviewing the results and our recommendations with plant
 - Adjustments were made to the existing Zone/blower map in SootOpt to account for blowers affecting both RH and Platen sections.
 - Adjustment were made to deal with a cross-over between DivSH and PlatenSH that had a noticeable effect
 - Adjusted existing rules and thresholds
 - Added rules that inhibit cleaning when section deltaTemp is at or above it's normal mean, given operating conditions
 - [Next] Add rules that propose cleaning when section deltaTemp is sufficiently below it's normal mean

Recent Results: Blower Counts

Recent Results: NOx, CO

Recent Results: RH Temps

Recent Results: Heat Loss Index

SCR/SNCR Systems & Optimization

- Reduce Reagent Usage
- Lengthen Maintenance Intervals
- Avoid Ammonia Slip
- Reduce risk of Ammonium Bisulfate & Sulfur Trioxide deposits
- Control "Blue-Plume" Opacity Excursions
- Tighter, condition-based gas temperature control
- Better Manage System Interactions

Boiler Optimization for Improving SCR Operations

- Challenge: to operate boiler with acceptable SCR performance under changing operating conditions
 - Acceptable NOx removal levels
 - Minimizing NH₃ usage and slip
 - Avoiding SO3-related issues (visible plume, air heater fouling)

CombustionOpt

- Lower, more balanced NOx profile at SCR inlet
- Compensating for local catalyst degradation or fouling
- Less & more balanced NOx = less close to SCR design limits

SootOpt

- Better control of temperatures throughout the gas path
- Sootblowing informed my load, gas temps, NOx, etc.
- Tighter control keeps temps within window needed by SCR
- Avoiding temp excursions on high side reduces SO2=>SO3 conversion rate and associated side-effects

Indirect Optimization Benefits

- Process Illumination
- Tradeoff Management
- Expertise Codification
- KPI-Focused Workflow
- Analysis & Decision Support
- Set-Point Refinement
- Dynamic Uncertainty Management

Breadth, Depth, and Flexibility

- Optimization can provide benefits in all these areas:
 - Heat Rate – NOx – MW
 - CO_2 - Opacity - SO₂
 - LOI Particulates – Hg
 - CO
 - Aux Power Operational Consistency Slagging & Fouling

- Commercial Availability
- Equipment Reliability
- Steam Temps
- Ramp Rates NH₃ usage Attemperation Sprays
- Maximum benefits can only be achieved with an integrated platform approach
- Platform designed for fleet-wide application, where benefits can be realized in manner best suited to differing organizations
 - Plant use
 - Centralized "war room"
 - Tailored service offering
 - Any combination of these

Questions?

For more information please contact:

Peter Spinney spinney@neuco.net 617-587-3103

