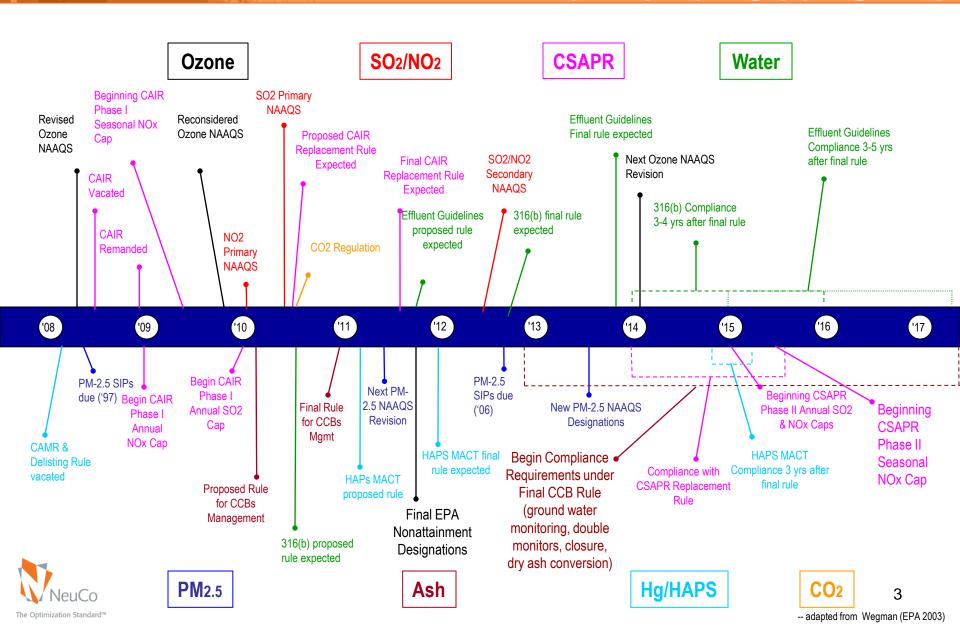


"Optimization of Air Pollution Control Systems"

Mcilvaine Webinar Peter Spinney, NeuCo



Today's Fossil Generation Challenges

- Unprecedented regulatory uncertainty
 - CSAPR
 - Utility MACT
 - Federal CO₂ regulation
 - Subsequent Clean Air Act Requirements (NAAQS, Regional Haze, etc.)
- Traditional and new sources of market volatility
 - Demand uncertainty (fighting the last war)
 - Fuel and allowance price volatility
 - Technological uncertainties
- All add to challenges bringing new capacity on-line
- CCCTs & renewables force new operating profiles
- Aging assets operating well beyond design life
- Graying work-force and skills shortage

Environmental Regulatory Timeline for Coal Units

CSAPR for NOx Reduction

- Affected power plant NOx emissions required to be reduced by 54% by 2014
- 26 states would be required to reduce NOX emissions during the ozone season to help downwind states attain NAAQS standards
 - Specifically the 1997 ground-level ozone standard
- Supplemental NOPR adds Ozone Season limits for NOx to five states covered by PM 2.5 plus Louisiana
- Most allowances for 2012 have already been allocated and deposited
- Emissions reductions required very quickly, in 2012 less than two months from now!

Near-Term CSAPR Rule Compliance Alternatives

- De-rate units
 - Live with reduced revenue and increased cost for less efficient gasfired generation
- Change fuels haven't already looked at this?
- Stage deeper with LNBs and OFA
 - Live with more erosion & tube leaks & slagging
- Run SCRs and/or SNCRs harder
 - Live with reagents costs & slip & plume & pluggage
- Optimize your boilers
 - Reduced and less variable boiler NOx
 - Deeper staging with less slagging and corrosion
 - Greater removal from SCRs/SNCRs w/fewer side-effects

Longer-Term Strategic Implications

- Minimize capital commitments for CSAPR while emerging regulatory changes make clear which units can survive and which cannot
- Inform future capital decisions for surviving units with better understanding of true (optimal) baseline performance
- Better equip surviving units to cope with:
 - Greater demands on existing emissions control hardware
 - Process changes and variable costs for new emissions hardware
 - Operational profiles associated with fundamentally altered markets
 - Influx of renewables with intermittent generation output profiles
 - Reduced capacity factor due to more efficient newer capacity coming on-line
 - Problems associated with aging assets and changes from design conditions
 - Greater operational challenges with fewer skilled operators and engineers
 - Ever-greater needs to "push the envelope" in order to "stay in the money"

BoilerOpt®

- NeuCo's total Boiler Optimization software solution:
 - Optimizes boiler performance in closed loop to improve unit reliability, efficiency & emissions
- Combines CombustionOpt® and SootOpt® products
- Uses a combination of optimization technologies:
 - Neural networks, expert rules, model predictive control
- Continually manages interrelated boiler variables:
 - Combustion quality, fuel & air mixing, gas & steam temps, fouling, tube erosion & emissions
- Manages tradeoffs between combustion and heat transfer processes
 - Aligns them with overall performance and emissions objectives
- Adjusts to fluctuating constraints & changing objectives

Breadth, Depth, and Flexibility

- Optimization can provide benefits in all these areas:
 - Heat Rate NOx MW Commercial Availability
 - CO₂ Opacity SO₂ Equipment Reliability
 - LOI Particulates Hg Steam Temps
 - CO Ramp Rates NH₃ usage Attemperation Sprays
 - Aux Power Operational Consistency Slagging & Fouling
- Maximum benefits can only be achieved with an integrated platform approach
- Platform designed for fleet-wide application, where benefits can be realized in manner best suited to differing organizations
 - Plant use
 - Centralized "war room"
 - Tailored service offering
 - Any combination of these

Indirect Optimization Benefits

- Process Illumination
- Tradeoff Management
- Expertise Codification
- KPI-Focused Workflow
- Analysis & Decision Support
- Set-Point Refinement
- Dynamic Uncertainty Management

Integration of Emissions & Efficiency Silos

- Emissions and efficiency used to be addressed by different "silos" within power generation organizations
- Efficiency efforts often took back-seat to emissions
 - Regulatory "pass-through" clauses
- Fuel costs often handled fleet-wide
- CO₂ has brought efficiency and emissions together
- Reagent costs for NOx create large new "non-fuel"
 O&M cost

Bottom Line: Must integrate management of emissions, fuel, reagent costs and tradeoffs between them

Contact Information

For more information please contact:

Peter Spinney spinney@neuco.net 617-587-3103

