

EPEI ELECTRIC POWER RESEARCH INSTITUTE

FGD Wastewater Treatment Evaluation

Paul Chu EPRI

650 855 2362

pchu@epri.com

McIlvaine Webcast August 15, 2013

Proposed EPA Numeric Limits (April 2013)

FGD ELG Limits by Technology Option		Daily Maximum	Monthly Average				
Chemical Precipitation + Biological							
Arsenic	μg/L	8	6				
Mercury	ng/L	242	119 *				
Selenium	μ g/L	16	10				
Nitrate/Nitrite	mg/L	0.17	0.13				

ORSANCO, others considering a 12 ppt <u>discharge</u> limit Effluent Guidelines is an <u>internal</u> limit of 119 ppt

Treatment Strategy: Putting the Puzzle Together

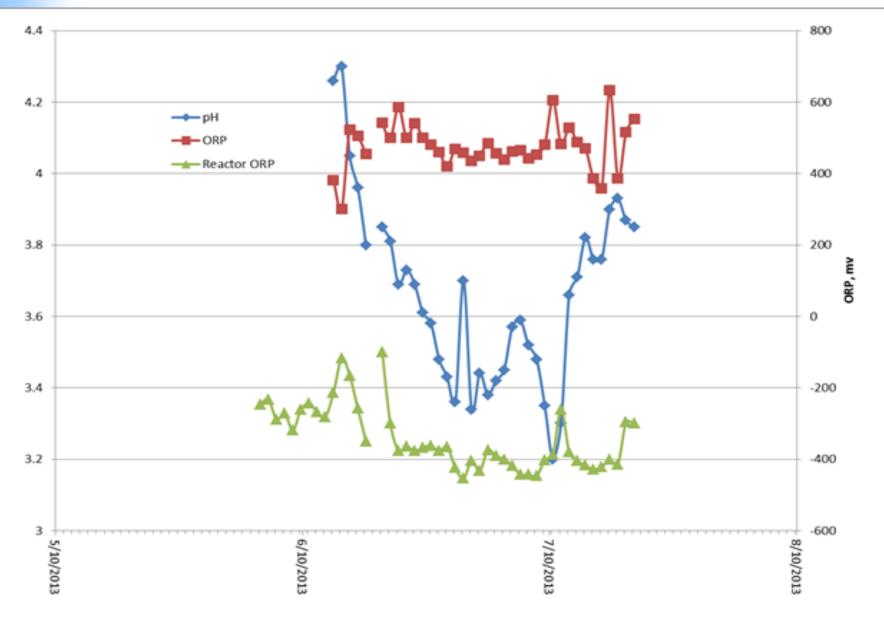
- Selenium, nitrate drive "core" selection
 - 1. Biological
 - 2. Zero valent iron (ZVI), others phys/chem approaches?
 - 3. ZLD: thermal, flue gas based
- Mercury, arsenic
 - Possibly achieve with "core" technology
 - Add polishing technology, if necessary

R&D Needs, i.e. Technology Gaps Cost-Effective, Reliable Technologies

Selenium

- Treatment of selenate and "other" Se compounds
- Nitrate/nitrite
 - Will current biological systems, ZVI meet limits?
- Mercury
 - Evaluate various polishing adsorption media
- Arsenic
 - Optimize current phys/chem systems
 - Evaluate adsorption media developed in drinking water applications on FGD water

Independent Evaluation of Treatment Technologies


Selenium, Nitrate/Nitrite Biological Treatment

- Several commercial biological treatment systems
 - Much of the Duke data less than 10 ppb
- EPRI R&D: Evaluate alternative bioreactors, applied in non-power applications
- Ongoing pilots at eastern bituminous power plant
 - Membrane bioreactor (MBR)
 - Fluidized bed reactor (FBR)
- Manage untreated FGD water chemistry i.e. ORP, pH
 - Concerns with coal switching, load swings
- Vertical flow wetlands
 - Several pilot completed; 2 full-scale evaluations

FGD Water Variability Requires "Management"

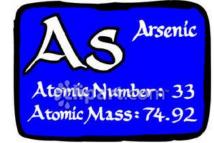
"Other" Selenium Compounds Treatability Concern; Vertical Flow Wetland Study

	Se ⁺⁴	Se ⁺⁶	Other Measured Se	Total Dissolved Se	Sum of Se Species	Unaccounted Se
Influent	1730	154	39	1990	1923	67
Effluent	9	ND	10	94	19	75

- What are these compounds, possibly:
 - Se-S
 - Se-organic
 - Se-N
 - Se-halide
- Planned lab studies to evaluate converting these Se compounds to more treatable forms

Selenium, Nitrate/Nitrite Zero Valent Iron (ZVI)

- Two 1-gpm pilots completed
 - Generally met selenium, mercury, arsenic, nitrate targets
 - "Other" selenium compounds: potential concern at 1 site
- Promising results warrant more studies on more FGD waters; every FGD water may be different
 - Planned 1-gpm pilot at eastern bituminous site, parallel with pilot bioreactors
 - Planned 50-gpm demo at Water Research Center (WRC)


Mercury Summary

- Reminder: Effluent Guidelines set internal limits; some regions/states considering more stringent discharge limits
- Strategy: Evaluate polishing treatment i.e. adsorption media
- EPRI working with technology vendors to conduct lab screening studies for mercury (and other trace elements)
 - Various adsorption media, "designer" compounds show promise for further evaluation
- Planned pilot studies beginning this Fall

Arsenic Summary

- Will conventional phys/chem (lime desaturation plus ferric coprecipitation) achieve 6 and 8 ppb limits?
 - Field studies to characterize speciation, total vs dissolved
 - Planned lab studies to evaluate ideal pH
- Arsenic speciation: +3 vs +5, both may be present
 - Most technologies (e.g. ferric) preferentially treat +5
 - -+3 can easily be oxidized to +5, i.e., with Cl
- Will traditional arsenic media from groundwater/drinking applications extrapolate to FGD water?
 - GFO (granular ferric oxide)
 - GFH (granular ferric hydroxide)

Additional Planned Pilot Field Studies Encourage interested companies to participate

- Conduct additional pilot studies of promising approaches for these target pollutants
 - Evaluate mercury, selenium, possibly arsenic
- AEP Amos: ~ 6 months of pilot tests
 - 2 phases: upfront screening followed by longerterm testing
 - Target start date ~October '13
- 2nd FGD site (TBD)
 - Target start data ~March '14

FGD Water Chemistry Will Likely Vary More Studies on More FGD Waters

Summary: Our Current Path Forward

- More stringent limits are almost here
- Treatment performance could be very site-specific
 - Need more studies on more FGD waters
- Selenium/Nitrate
 - Biological: pilot studies of promising technologies
 - ZVI: 2 pilots completed; 2 more studies planned
- Mercury: planning pilot studies in Fall
- Arsenic: conducting lab evaluations with FGD

Collaborative Effort with Interested Companies

Together...Shaping the Future of Electricity

