McIlvaine Webinar: 2/9/2012

Utility Mercury Air Toxics Rule: PM Control with WESP Technology

Buzz Reynolds VP Wet ESP Siemens Environmental Systems & Services

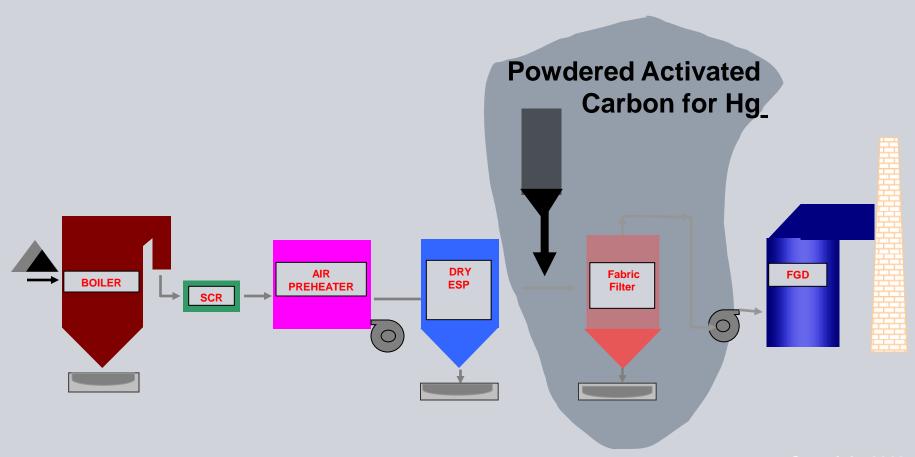
Outline of Presentation

- 1. Proposed PM Standards for New & Existing Units
- Focus of Discussion on Plants with WFGD
- 3. Conventional Wisdom = DSI + Fabric Filter
- 4. Possible Alternative = WFGD + Wet ESP
- 5. ICR Data
- 6. Issues with Fabric Filters
- 7. Pressure Drop comparison
- 8. Real Estate comparison
- 9. Maintenance comparison
- 10. Water Usage Comparison
- 11. Process Comparison
- 12. Capital Cost comparison
- 13. Summary

PM Emissions Limits

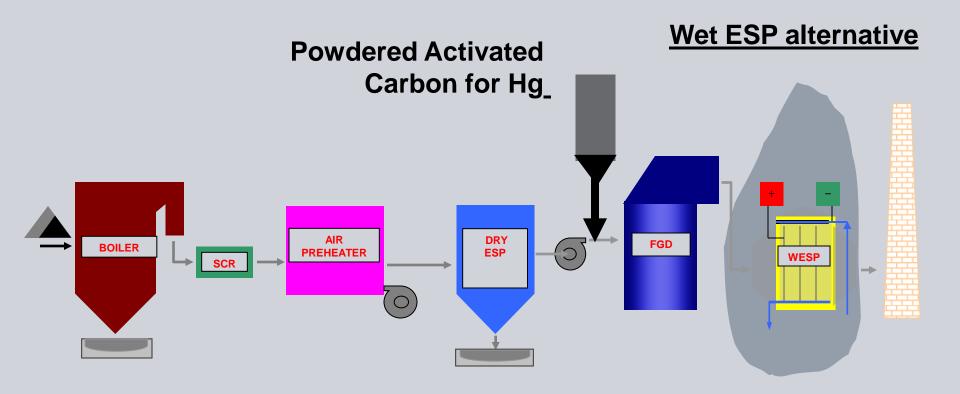
Utility Mercury Air Toxics Rule Emission Limits for Particulate

	Existing Coal-Fired Units			New Coal-Fired Units		
	Initial	Final	П	Initial	Final	
	Proposed Rule	Issued Rule	ш.	Proposed Rule	Issued Rule	in
	(5/3/11)	(12/16/11)	ш.	(5/3/11)	(12/16/11)	lb/MMBtu
PM filterable	-	0.03 lb/MMBtu or 0.3 lb/MMWh	П	-	0.007 lb/MWh	0.0007
PM Total	0.030 lb/MMBtu or 0.3 lb/MWh	-		0.05 lb/MWh	-	-
or			П			
Non-Hg Metals	0.00004 lb/MMBtu or 0.0004 lb/MWh	0.00005 lb/MMBtu or 0.5 lb/GWh	П	0.00004 lb/MWh	0.06 lb/GWh	0.0006
or						
Individual metals			П			
Antimony	0.6 lb/TBtu or 0.006 lb/GWh	0.8 lb/TBtu or 0.008 lb/GWh		0.00008 lb/GWh	0.008 lb/GWh	0.0008
Arsenic	2.0 lb/TBtu or 0.02 lb/GWh	1.1 lb/TBtu or 0.02 lb/GWh		0.0002 lb/GWh	0.003 lb/GWh	0.0004
Beryllium	0.2 lb/TBtu or 0.002 lb/GWh	0.2 lb/TBtu or 0.002 lb/GWh		0.00003 lb/GWh	0.0006 lb/GWh	0.00006
Cadmium	0.3 lb/TBtu or 0.003 lb/GWh	0.3 lb/TBtu or 0.003 lb/GWh		0.0004 lb/GWh	0.0004 lb/GWh	0.00004
Chromium	3.0 lb/TBtu or 0.03 lb/GWh	2.8 lb/TBtu or 0.03 lb/GWh		0.02 lb/GWh	0.007 lb/GWh	0.0007
Cobalt	0.8 lb/TBtu or 0.008 lb/GWh	0.8 lb/TBtu or 0.008 lb/GWh		0.0008 lb/GWh	0.002 lb/GWh	0.0002
Lead	2.0 lb/TBtu or 0.02 lb/GWh	1.2.0 lb/TBtu or 0.02 lb/GWh		0.0009 lb/GWh	0.002 lb/GWh	0.0002
Manganese	5.0 lb/TBtu or 0.05 lb/GWh	4.0 lb/TBtu or 0.05 lb/GWh		0.004 lb/GWh	0.004 lb/GWh	0.0004
Nickel	4.0 lb/TBtu or 0.04 lb/GWh	3.5 lb/TBtu or 0.04 lb/GWh		0.004 lb/GWh	0.04 lb/GWh	0.004
Selenium	6.0 lb/TBtu or 0.06 lb/GWh	5.0 lb/TBtu or 0.06 lb/GWh		0.03 lb/GWh	0.006 lb/GWh	0.0006

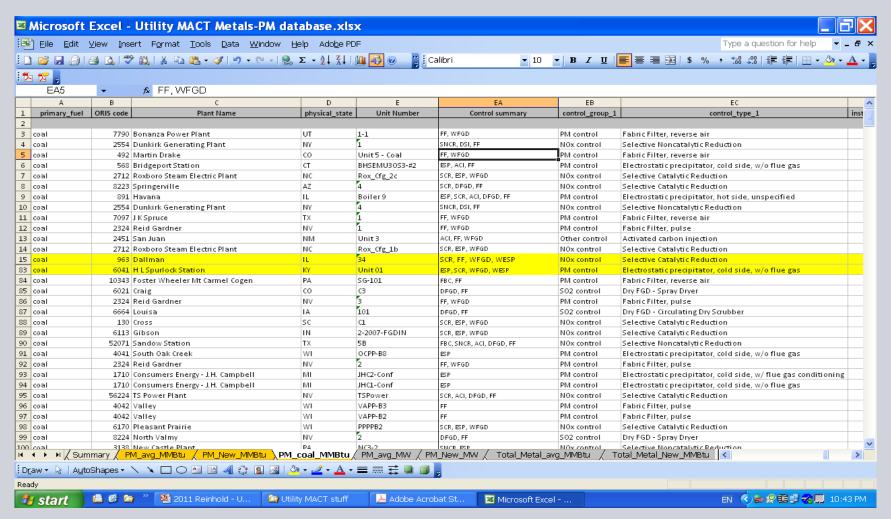


Focus of Discussion on Plants with WFGD

- Plants that do not have a wet FGD system will likely remain with "dry" air pollution control solutions- ESP, FF, Spray Dryers, Sorbent Injection.
- However, those plants with ESPs and WFGD will likely need additional Hg & PM control due to sorbent injection and should consider a Wet ESP as an alternative to installing a fabric filter.



Conventional Wisdom = PAC + Fabric Filter



Possible Alternative = WFGD + Wet ESP

ICR DATA has 2 Plants with WESP

Total PM Emissions ICR Data vs WESP Data

	# of Units	Ave PM _f Lb/MMBtu
PM _f Limit		0.03
Top 12% mean	130	0.0022
Dallman Unit 3	1	0.001
HL Spurlock Unit 1	1	0.0036

New Coal Plant WESPs not in ICR Data

	Unit Size		APC	
Facility	(MW)	Fuel	Control Technology	Status
Elm Road	2 x 615	Pittsburgh #8	FF / WFGD / WESP	Online
		Blend of Bituminous		
Trimble		&		
County	750	Sub-bituminous	ESP / FF / WFGD / WESP	Online 2011
Prairie		Southern IL		Fall 2011
States	2 x 750	Bituminous	ESP / WFGD / WESP	& Spring 2012

Fabric Filter Issues

- Increased pressure drop
 - may require new larger fans
- More real estate for FF
 - is there enough room
- On-going bag replacement
 - cost + outage time
- Increased waste by-product
 - need to landfill

Are all costs factored into an overall life cycle analysis?

Pressure Drop Comparison

Wet ESP + duct

< 2" W.C. average pressure drop Existing ID Fans may be acceptable.

Fabric Filter

= 7"- 10" W.C. pressure drop May require replace ID fans?

Real Estate comparison

Wet ESP

Velocity = 7-10 fps

@ Half the size of a FF

Use area between WFGD & stack.

Fabric Filter

Velocity = 4-6 fps

@ twice the size of a WESP

Is there room?

WESP installed after a WFGD

FF/WFGD/WESP

DESP / WFGD / WESP

Maintenance Comparison

Fabric Filters

- Bag Replacement every 3-5 years
- Hopper smoldering/fires
- Ash conveying
- A lot of moving parts & ash
- Constant maintenance

Wet ESP

Alloy internals - no replacements
Everything is saturated & wet
No moving parts & no ash
Drain to WFGD
Outage inspection & maintenance

Water Usage Comparison

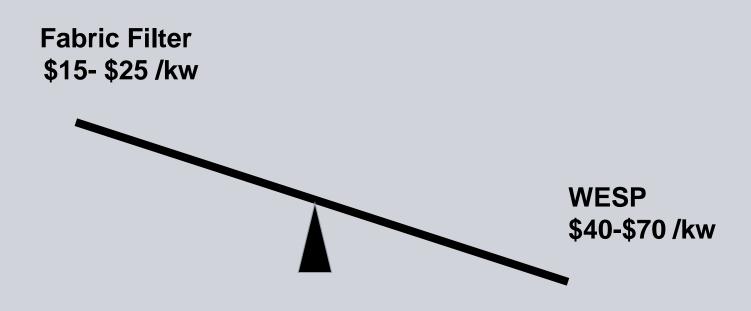
Fabric Filter

- No water used_

Wet ESP

- No additional burden
- First use of WFGD water
- Drain to WFGD

Process Comparison


Cannot handle WFGD upset conditions

Cannot remove condensables

Wet ESP Can handle WFGD upset conditions Can remove condensables Fabric Filter

Capital Cost comparison

Summary

- Wet ESP after a WFGD offers
 - Less pressure drop
 - Less maintenance
 - Less real estate
 - High removal (> 90%) of PM2.5, SO3 and some Hg
- Need to analyze the economic benefits of a WESP's lower operating costs vs higher capital cost than a Fabric Filter.
- Design /Build for worst case situation to avoid future add-ons
 - Future PM regulations will likely include condensables SO3
 - MATS limits will get more stringent 5 year review
 - Look to limits for new coal plants—0.007 lb/MWh

THANK YOU

Buzz Reynolds

VP – Wet ESP
Siemens Environmental Systems & Services
Siemens Energy
501 Grant Street
4th Floor
Pittsburgh, PA 15219

jamesreynolds@siemens.com 908 -522-6616