Application of Combustion Optimization to Reduce Activated Carbon Requirements for MATS Compliance

Neil Widmer GE Energy

McIlvaine Hot Topic Hour April 18, 2013

imagination at work

Introduction

- Activated carbon injection system optimization
- Combustion optimization to enhance "native" Hg capture on fly ash
- Demonstrate over 70% mercury removal and reduce activated carbon injection

Mercury Optimization Approach

Coal Fired Boiler Demonstration Site

- **Boiler:** 250 MW Opposed Wall Fired
- NOx Control: Low-NOx Burners and Overfire Air
- PM Controls
 - Electrostatic
 Precipitator (SCA ~ 249 ft²/kacfm;
 - SO3 Conditioning
 System

Progress Energy Lee Station, Unit 3

Eastern Bituminous Coal • HHV ~ 12,450 Btu/lb • Sulfur ~ 0.82% wt.

• Hg ~ 5.0 lb/TBtu

Activated Carbon Injection (ACI) System

ESP Inlet Duct Characteristics

Photograph of duct work between air preheater (APH) exit and ESP inlet

Flue Gas from APH

ACI Lance Design Optimization

Flue Gas Inlet

- CFD applied to optimize transport flow rate and lance design.
- Lance placement based upon existing ports.

Sorbent Injection System

- 250 ft³ day silo
- 20 ton bulk trailer
- Bulk bag unloader

Combustion Optimization

Zonal Combustion Tuning

Combustion sensors provide spatial $\rm O_2$ and CO data to assist boiler tuning and operation

Combustion Optimization

Coal flow balancing: coal flow deviation < 10%.

Air flow balancing: oxygen distribution balanced to within 15% (± 0.48% O₂).

Burner tuning: achieved good stability and lowered NO_X emissions.

Impact of combustion optimization on stack mercury emissions & NO_X

Activated Carbon Injection Performance

Sorbent Performance Characterization

imagination at work

Darco Hg 30-Day Performance Test Overall Mercury Reduction

Combustion optimization can reduce sorbent requirements

Summary

- Combustion optimization improved "native" mercury capture
- Existing SO₃ conditioning required twice the injection rate for the same mercury removal
- Long-term testing averaged 79% mercury removal
- Sorbent Injection impact on ESP performance were mitigated
- GE's approach can reduce NOx and CO emissions, improve reliability and heat rate while providing mercury control

