

CO₂-Enhanced Oil Recovery and Geologic Storage in the Midwestern USA

McIlvaine Company Webinar August 29, 2013

Neeraj Gupta, Ph.D. Senior Research Leader Battelle, Columbus, Ohio gupta@battelle.org 614-424-3820

Discussion Topics

- Introduction to Battelle
- Midwestern Regional Carbon Sequestration Partnership (MRCSP)
 - Large-scale CO₂-Utilization test
- Related subsurface research and benefits
 - Large-scale deployment
 - Finding storage potential in the Ohio River Valley
 - Ensuring safety
 - Understanding brine disposal needs

A History of Innovation

inspiring new industries; revolutionizing products

What Matters Most Tomorrow

inspiring new industries; revolutionizing products

Battelle plays a key role in the national CO₂ storage program

Case Studies of Success

AEP Mountaineer

- Site characterization, design
- Permitting, construction
- Operations
- Post-injection monitoring

DOE Regional Partnerships

- Regional Mapping
- Policy & Regulation
- Small-Scale Tests
- Large-Scale Test
- Ohio River Valley
 Characterization

Domestic and International Consulting

The MRCSP assesses viability of carbon sequestration

- Established in 2003 by Battelle with DOE-NETL funds – Currently in Phase III
- Led by Battelle, there are 40 organizations from non-profit, government, and commercial entities
- Mission The premier resource for CO₂ storage and utilization expertise in the region

MRCSP CO₂ Sources

Yearly CO₂ Emitted

Source Types

MRCSP region: Many CO₂ emission sources with dependence on coal

- CO₂ storage/utilization technologies key to affordable energy supplies
- Environmental/climate issues and shale gas, are leading to energy supply transition
- Coal continues to be dominant fuel source

MRCSP region has large but uneven storage potential

Region is home to several field tests - but many more are needed

BUSINESS SENSITIVE

MRCSP region has many large historic oil and gas producing areas

- ~ 8,500 million metric tons of CO₂ could be stored within depleted O&G fields (~10 years worth of regional emissions)*
- Using CO₂ for EOR could lead to the production of an additional 1.2 billion barrels* of oil
- However, EOR needs to be proven in the region

Oil and gas fields map for region*

* Source: Estimates developed by the Geological Surveys within the MRCSP

MRCSP large-scale test site — only $CO_2 - EOR$ site in the Midwest

Location:

Otsego County, Michigan

Host Company:

Core Energy LLC

Reservoir Type:

Closely-spaced, highly compartmentalized oil & gas fields located in the Northern Michigan Niagaran Reef Trend

Source of CO₂:

Natural Gas Processing Plant

Injection Goal:

At least 1 million metric tons of CO_2 over ~four years

Local Participants:

Western Michigan University

Oil trapped within ancient buried reef structures that were formed millions of years ago when oceans covered this part of the world.

MRCSP Field test research objectives

Site Characterization

> Reservoir Models

Operational Models

Monitoring Techniques and Equipment

Reef Capacity and Injectivity

Assess the variability among adjacent reefs

Validate using injection and production volumes

Predict CO₂ storage and oil production; suggest approaches to optimize both

Identify cost effective and useful techniques and methods

Identify key parameters and variability; address uncertainty

MRCSP will evaluate reef capacity

Oil fields are in various production life-cycle stages

- Pre-EOR Reefs New CO₂ EOR Undergone primary oil recovery but no CO₂-EOR yet
- Active EOR Reefs Completed primary oil recovery and CO₂-EOR is under way
- Late-Stage EOR Reefs
 Undergone extensive primary and CO₂-EOR highly depleted potential future storage targets?

Existing EOR infrastructure enables cost effective research for MRCSP tests

- MRCSP injection started in April 2013 at more than 1,000 t/day (~10% of 500 MW power plant)
- 7 CO₂-EOR fields in varying life stages
- MRCSP goal inject and monitor >1 MMT CO₂
- Extensive monitoring and operational assessment underway

3D Seismic is a key tool for exploration

- Core Energy has 3D seismic on all project reefs
- Core also collected 38 sq miles of new 3D seismic in 2011
- 3D seismic essential for E&P in these areas
- Seismic technologies also useful for monitoring in some areas

14

Battelle The Business of Innovation

Highly depleted field provides a test bed for advanced monitoring technologies

Battelle The Business of Innovation

Monitoring options under testing at Dover 33 field

BUSINESS SENSITIVE

MRCSP will continue to monitor reef after injection

- Late-stage reef injection began April 2013 ~100K tonnes to date
- Up to 500,000 tonnes of CO₂ over the next 2 to 3 years
- Additional fields will be selected for new CO₂-EOR tests
- More than 125,000 tonnes injection/recycling monitored in active reefs by July 2013
- Wells returned for normal operations by Core Energy at the end

Test results will be used to determine regional feasibility

- Extensive 3-D seismic and well data from project area, as well as data on over 700 reefs regionally
- Test modeling and monitoring will be used to estimate capacity, injectivity, economics, regulatory issues for storage
- Results useful for other carbonate reservoirs in region

Battelle The Business of Innovation

Developing CO₂-EOR/storage in Ohio's depleted oil fields

- Significant additional oil recovery and CO₂ utilization potential in Ohio
 - Example East Canton oil field produced on ~95 MMbbl (<10%) of 1.5 billion barrels OOIP
 - Other plays include Beekmantown, Rose Run, Copper Ridge fields
- Additional testing is needed to determine CO₂ utilization viability in such fields
- CO₂ utilization may not occur without oil & coal collaboration – a key challenge

Understanding injectivity in Appalachian Basin: extending knowledge from AEP Mountaineer tests

- Extensive work at AEP Mountaineer site over 11 years
 - Exploration and testing revealed thin but highly permeable zones with high injectivity
 - Exploration needed for commercialscale storage
- Regional mapping essential to qualify this formation
 - Working with oil/gas/disposal well drilling to characterize the region
 - Significant cost leveraging

Copper Ridge Dolomite Core 8370'

Developing CO₂ storage and utilization options in Appalachian Basin

- Developing maps using knowledge from Mountaineer Projects
- Conceiving new initiatives to map storage and CO₂-EOR potential
- Research co-funded by Ohio Coal Development Office under MRCSP

Battelle The Business of Innovation

Battelle plays a key role in geologic storage development for FutureGen

- Battelle involved since the inception
- Oxy-Combustion Repowering with pipeline transport to Morgan County, Illinois site
- Deep saline formation storage
- Battelle leading characterization, monitoring, design for the Alliance
- Storage in the Mt. Simon Sandstone up to 5000' depth
- Front-end engineering design underway (2013) with construction planned to start in 2014

FutureGen 2.0 Test Well October 5, 2011

Understanding risk from old wellbores is important for safe storage

- Systematic assessment of wellbore integrity for CO₂ storage
- Areas in the Midwest have perceived risk for well integrity due to long drilling history
- However, many of the old wells may not present realistic risk for CCUS b/c they are shallow, depressurized, or properly plugged and abandoned

22

Objective is to evaluate well status and specifications for CCS risk mitigation

Analyze data in terms of depth, age, formation, spatial distribution

Funded by DOE, with OCDO, BP, and NiSource

abandonment data

23

Development of subsurface brine disposal framework in the Northern Appalachian Basin Battelle

- Applying MRCSP knowledge to shale gas environmental issues
- 2-year project funded by DOE through RPSEA
- Evaluate brine disposal capacity, protocols
- Assess safe injection pressure
- Economic issues
- Knowledge sharing with public

Battelle selected by World Bank for geologic storage in Sichuan Basin

- Assess the suitability and select potential candidate storage sites near the plant
- Provide training at two capacity building workshops in China
- Facilitate international visits to CCUS sites in the USA
- Collaboration with China Geological Survey

Future need: addressing multiple demands on subsurface resources

- Shale oil/gas production
- Produced brines disposal
- CO₂ utilization, and storage (CCUS) – mitigating greenhouse gas emissions
- Incremental oil recovery
- Conventional oil/gas production
- All these require integrated longterm management and clear policy on mineral rights, liability, and permitting

Example from Michigan Basin

Battelle's work with MRCSP will deliver robust carbon emissions reduction strategies

- MRCSP has focused our efforts on carbon capture, utilization, and storage activities
- Novel modeling and MVA techniques will be further tested and validated using nearly depleted oil fields in Michigan
- Lessons learned will contribute to best practices and help to develop regional implementation plans

Questions?

Neeraj Gupta, Ph.D. Senior Research Leader, Battelle, Columbus, Ohio gupta@battelle.org 614-424-3820