Agenda

- Introduction SOLVAir Solutions
- Summary of HCl requirements
- EERC Pilot Test Results and Plant Experience
- SOLVAir Solutions
SOLVAir® Solutions - North America

- Chemical products for the air pollution control market
- Bring expertise to customers, engineering companies, and many others
- Consists of Sales, Marketing, and Technical support

SOLVAir® Global Mission Statement:
To offer and continuously develop competitive and sustainable environmental solutions used for air emissions control and associated waste, which includes a portfolio of products, services, technologies and treatment systems.
<table>
<thead>
<tr>
<th>Rule</th>
<th>Utility MATS</th>
<th>Industrial Boiler MACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCl Limit</td>
<td>0.002 lbs/MMBTU</td>
<td>0.022 lbs/MMBTU</td>
</tr>
<tr>
<td>Effective Date</td>
<td>April 16, 2015 (one year extensions available)</td>
<td>January 31, 2016 (one year extensions available)</td>
</tr>
</tbody>
</table>
Solvay testing with EERC

- Coal contained .78 lb/MMBTU Sulfur and 954 to 970 ppm HCl
- Regents used
 - Standard trona (S200)
 - d_{50}: 30 µm
 - Milled Trona (labeled as S250)
 - d_{50}: 15 µm, d_{90}: 60 µm
 - equivalent to milling S200 with a pin mill
 - Milled Sodium Bicarbonate (S350)
 - d_{50}: 12 µm, d_{90}: 40 µm
 - commercially available, pin mills can approach this particle size
 - Finely Milled Sodium Bicarbonate (labeled as S450)
 - d_{50}: 7 µm, d_{90}: 17 µm
 - can be milled on site with a classifier mill
 - Standard Hydrated Lime
 - d_{90}: 45 µm, purity: 96.8%

Injected upstream of ESP
- 2.5 seconds residence time at 650°F

Injected upstream of Baghouse
- 1 second residence time at 325°F
HCl Removal with Sorbent Injected at ESP Inlet

- Utility MACT Limit: 0.002
- Boiler MACT Limit: 0.022
HCl Removal with Sorbent Injected at Baghouse Inlet

- **Utility MACT Limit**: 0.002
- **Boiler MACT Limit**: 0.022

[Graph showing HCl at Stack (lb/mmBtu) vs. Total NSR for different sorbents (S200, S250, S350, Hydrated Lime).]
HCl Removal vs. SO₂ Removal - ESP

SO₂ Removal Rate (%) vs. HCl Removal Rate (%)

Graph showing the removal rates of HCl and SO₂ for different substitutions (S200, S250, S350, S450).
HCl Removal vs. SO₂ Removal – Baghouse
DTE St. Clair

Tested trona and pre-milled sodium bicarbonate

- HCl removal to MATS standard (85% removal) at total acid gas NSR of less than 0.45 for both milled trona and pre-milled sodium bicarbonate with hot side addition.
 - Trona performed a bit better than expected from our data likely due to increased residence time and mixing through the air heater.
- At the NSR needed to remove the HCL to compliance levels trona also removed about 15% of the SO2 present while bicarbonate removed about 25% of the SO2 at those conditions
- Removal efficiency for HCl was about the same for trona and bicarbonate
- PAC addition does not affect HCl removal
- DSI for HCl can affect mercury removal in some cases especially when used in hot side applications.
 - some NO₂ generation was confirmed and was absorbed on carbon
 - less NO₂ generation occurred at lower temperature
 - HCl removal prior to the air heater could also impact mercury oxidation
- Trona injection cold side was less effective for HCl control
 - trona benefits from higher temperatures
 - shorter residence time and lack of mixing through the air heater work against better removal
DSI and Mercury Impacts

- SO$_3$ removal will improve mercury adsorption on fly ash and carbon
- HCl removal shifts the balance between oxidized and elemental mercury
 - Oxidized mercury is more easily captured
 - Sorbent injection hot side has a greater impact on this balance as mercury is oxidized across the air heater
 - Increased PAC injection or use of BPAC are options when mercury adsorption is affected by DSI
 - Sodium sorbents can react with halogen products that are added in the furnace and reduce their effectiveness to oxidize mercury
- NO$_2$ formation can impact carbon performance
 - NO$_2$ is adsorbed by carbon
 - DSI can convert some NO to NO$_2$ most evident on hot side additions where there is no NO$_x$ control
 - NO$_x$ reduction mitigates the impact of NO$_2$ formation
Summary

- Trona and sodium bicarbonate are cost effective options for HCl control.
- \(\text{SO}_2 \) control is achievable with the same system.
- Particle size is key for optimum results.
- HCl mitigation can impact mercury capture and it is important to consider where the sorbents are added.
- Additional information at www.solvair.us
All technical advice and recommendations provided, if any, are intended for use by persons having the appropriate education and skill. Solvay Chemicals, Inc. and its affiliates shall not be liable for any use or non-use of such advice and/or recommendations. Users of our products are solely responsible for the design, construction and operation of their own facilities.