Changing Requirements for Cooling Tower Water Treatment

McIlvane Webinar
Power Plant Cooling Towers and Cooling Water Issues
May 23, 2013

Brad Buecker
Process Specialist
Kiewit Power Engineers
The Current Scenario

- We are seeing a continual stream of combined-cycle power plant RFPs.
- Not one has called for once-through cooling, in large measure due to pending 316a and 316b regulations.
- The two primary alternatives consistently required are:
 - Wet cooling towers (the focus of this presentation)
 - Air-cooled condensers
The Need for Continued Cooling Water Training

• Many new personnel will need to learn about cooling water technical issues, due to:
 • Increasing restrictions on cooling water discharge
 • Quality (heavy metals, phosphates, TDS and others)
 • Sometimes quantity
 • Temperature
 • Retirements of many experienced personnel, particularly the “Baby Boomers”
Alkaline Treatment Has Been the Preferred Choice

- Alkaline pH minimizes general corrosion at the expense of greater scaling tendency
- Some ortho-phosphate to complex calcium and generate a cathodic protection product \([\text{Ca}_3(\text{PO}_4)_2]↓\)
- Perhaps one ppm of zinc to add protection at cathodic sites \([\text{Zn(OH)}_2]↓\]
- Organic phosphonates to control CaCO₃ scale at higher pH
- A small polymer dosage to help control calcium phosphate scaling

Source: Ray Post - ChemTreat
New Developments

- Phosphorous and zinc compounds have been the backbone of corrosion and scale control in the post-chromate years.
- For many cooling systems, new standards will limit the use of phosphorous and zinc, especially for larger systems that discharge to public waterways.
- Non-phosphorous options are emerging for cooling water treatment.

Reprint from Ref. 1.
Non-Phosphorous Scale Inhibition

- Key non-phosphorous deposit control agents include:
 - Polyacrylates and enhanced polyacrylates
 - Maleates and enhanced maleates
 - COOH is the functional group
 - Aspartates (acrylamides)
 - Co-, ter-, and quad-polymers
 - Functional groups include COOH, SO$_4$, acrylamides

- Combination of actives provides the best performance
Don’t Forget About Microbiological Fouling

- Fundamental treatment principles to prevent microbiological fouling have been known for many years, but problems consistently remain.
- Cooling systems are an ideal habitat for microorganisms.
- Microorganisms exhibit log growth and will foul a system more quickly than any other contaminant.
Biofouling Organisms

- **Algae**
 - Require sunlight for growth (tower deck)
 - Convert bicarbonate into organic carbon
 - Food for bacteria
 - Food for protozoa and “higher life forms”

- **Fungi**
 - Break down complex organics
 - Tower wood fibers
 - Molds and Yeasts

- **Bacteria**
 - The most diverse group
 - Heterotrophic
 - Facultative
 - Anaerobic
 - Autotrophic

- **Macrofouling Organisms**
 - Zebra mussels, Asiatic clams
Microbiological Control

- Gaseous chlorine use has declined greatly due to safety concerns.

- Bleach begins to lose effectiveness quickly as pH rises above 7.5.

- Very common has been feed of bleach and sodium bromide to generate bromine, which is more effective at pH 8 to 8.5.
Chlorine dioxide (ClO₂) is an alternative, but has often been too expensive and must be generated on-site.

A lower cost production option based on sodium chlorate is gaining popularity. The chemistry is:

- NaClO₃ + ½ H₂O₂ + ½ H₂SO₄ → ClO₂ + ½ Na₂SO₄ + ½ O₂ + H₂O
- Sodium chlorate and hydrogen peroxide are supplied as a stable blend

Chlorine dioxide advantages
- Not influenced by pH
- Does not form halogenated organics
- Does not form weak chloramines
- Fast acting
Microbiological Control - *Monochloramine*

- Monochloramine (NH$_2$Cl) is also gaining some notoriety.
 - Reaction of gaseous chlorine or bleach with ammonia or ammonium hydroxide.
- Monochloramine is not as potent as free chlorine, but
 - Longevity is greater
 - Less corrosive than free chlorine
 - Reportedly better at penetrating biofilms
- Chloramination is already commonly used in municipal potable water systems to limit THM production
Microbiological Control – Non-Oxidizers

- Non-oxidizing biocides are often a very viable technology to supplement oxidizers.
 - DBNPA
 - Isothiazolin
 - Glutaraldehyde
 - Quaternary amines
- Effectiveness is more specific to the type of organism
- Longer lasting than oxidizing biocides
 - Layup, closed loops, dead legs
- Much less corrosive than oxidizers
- More effective at penetrating biofilms
- More effective against macrofouling
Cooling Tower Fill Selection

- Cooling tower fill should maximize heat transfer but not at the expense of severe fouling.
- Selection is extremely dependent upon the quality of makeup water.
- More frequently, reclaimed water is being utilized for plant makeup.
Factors That Influence Fill Performance

- Flow path configuration (cross-flutes, offset-flutes, vertical-flutes)
- Flute size (specific surface area)
- Surface micro-structure
General Types of Counter-Flow Film Fill

- Cross-Flute Design
- Offset-Flute Design
- Vertical-Flute Design

Decreasing tendency to clog → Increasing performance

Source: Rich Aull, Brentwood Industries
High-Efficiency Film Fill

- Large specific surface area
- High performance
- Poor anti-fouling characteristics in fouling waters

Cross Flute (CF)

Source: Rich Aull, Brentwood Industries.
Anti-Fouling Film Fill

- Lower specific surface area
- Moderate performance
- Excellent anti-fouling characteristics

Source: Rich Aull, Brentwood Industries. An expanded discussion may be found in Ref. 1.
Film Fill Surface Structure

Surface structure enhances air/water contact

Source: Rich Aull, Brentwood Industries
Cooling Tower Discharge

- For decades, power plant water discharge has been covered under the National Pollutant Discharge Elimination System (NPDES).
- In many cases, the following four parameters were primarily regulated.
 - Total suspended solids (TSS)
 - pH
 - Oil and grease (O&G)
 - Residual oxidizer (chlorine, bromine, etc.) at the cooling water outfall
Cooling Tower Discharge

- NPDES guidelines are changing
 - The USEPA is preparing to issue new guidelines this year.
 - Some states have already implemented new control guidelines.
- Additional parameters on some lists include:
 - Total dissolved solids (TDS)
 - Sulfate
 - Copper
 - Zinc
 - Ammonia
 - Phosphate
- We are also seeing discharge quantity restrictions in some areas such as California.
Cooling Tower Discharge

- Control of discharge chemistry can put plant personnel between the proverbial “rock and a hard place,” particularly if the makeup is of poor quality or the cooling tower is required to run at high cycles to conserve water. Some examples of troublesome makeup include:
 - Treated municipal wastewater
 - High dissolved solids well water
- **Air pollution permits may limit TDS in the tower due to atmospheric particulate formation.**
Wastewater Treatment

- Many plants are being faced with discharge control, and the dreaded phrase “zero liquid discharge” is being heard more often.
- An emerging wastewater reduction technology utilizes membranes and softening to lower volume.
 - HERO® (High Efficiency Reverse Osmosis), licensed by Aquatech and GE.
 - OPUS®, licensed by Veolia.
Core Design of RO-Based WWT Systems

CT Blowdown

UF or MF

NaHSO₃

Sodium Softener

NaOH

High pH RO Unit

Reject to Pond or E/C

Permeate Return to Process
Core Design of RO-Based WWT Systems

- UF or MF for particulate removal
- Sodium bisulfite (NaHSO$_3$) feed to remove oxidizing biocides
- Sodium softening to remove calcium and magnesium hardness
- Caustic injection to keep silica in a soluble form
- RO to recover ~ 90 percent of the water
Concerns

- The process is not foolproof. Recent issues we have directly encountered include:
 - Some standard cooling water chemicals may foul the UF membranes.
 - The membrane manufacturer and type can greatly influence fouling.
 - Coagulants may not be effective at converting the chemicals into filterable flocs.
 - Low quality backwash water can cause scaling of UF membranes.
 - Clarification of the influent stream may be required.
Concerns

Even with 90 percent water recovery, a liquid stream still remains. Possible disposal solutions include:

- Evaporation ponds
- Deep-well injection
- Thermal evaporation/crystallization
- Truck the liquid off-site to a waste disposal company.
Summary

• Cooling towers are an extremely well-understood technology for removing heat.
 • They can produce lower circulating water temps than ACCs during hot weather.
• Chemistry control within the tower itself and with regard to blowdown chemistry is becoming much more complex due to changing regulations.
• Even at relatively low cycles of concentration, significantly more water is lost to evaporation than blowdown.
 • Impacts water usage.
 • Airborne solids can be of concern.
Reference

Also, the half-day pre-conference seminar at this year’s Electric Utility Chemistry Workshop will be on cooling water, where Ray Post of ChemTreat will assist me. The conference will be held June 11-13 in Champaign, Illinois, and registration is still open. Information can be found at, www.conferences.illinois.edu/eucw
Thank you!

I always enjoy discussing power plant issues. Please feel free to contact me at the following:

Brad Buecker, Process Specialist
Kiewit Power Engineers
Lenexa, Kansas
Phone: (913) 928-7311
E-mail: brad.buecker@kiewit.com