Environmental Benefits of Replacing "Old" Coal-Fired Power Plants with "New" Ones

McIlvaine Hot Topic Hour – Ultrasupercritical Boilers March 1, 2012

- McIlvaine conducted a study to identify specific coal-fired boilers likely to be retired due to upcoming regulations
- The "Train Wreck" of regulations included:
 - Transport Rule (SO₂ and NOx)
 - Revisions to Ambient Air Quality Standards (PM_{2.5}, SO₂, NOx, Ozone)
 - Cooling Water Intake Rule
 - Coal Combustions Residuals Rule
 - Utility MACT Rule (mercury, air toxics)
- Study of Potential Retirements conducted in anticipation of Utility MACT rule
 - Driven by concerns that numerous retirements would affect electricity supply and reliability

Potential Coal-Fired Retirements

Scenario	Coal-Fired Boiler Retirements (MW)	Percent of Total Coal-Fired Capacity		
Best Case	32,500	9.5%		
Most Likely Case	67,500	19.7%		

MELIVAINE Replace Rather Than Retire

- Follow-up study projected environmental benefits of replacing "older" coal-fired boilers with "new" ones
 - Compared actual emissions from <u>older</u> boilers
 - With typical emissions from <u>new</u>, more efficient, boilers
- Replacing boilers is an important issue given our aging coal fleet

MCILVAINE Comparison of Emissions

- Compared emissions of five "pollutants": NOx, SO₂, PM, Mercury and CO₂
- Identified actual boilers to be retired based on size, age and pollution control equipment
- Determined actual emissions from those boilers based on data reported to EPA and other information
- Developed profile of emissions from typical new Supercritical boiler

Coal Fleet Replacement Scenario	Units to be Replaced		Total Annual Heat Input	New Units		Reduction in NOx Emissions		
	Primary Type of Coal	No. of Units	Annual NOx Emissions (Tons/Year)	(MMBtu x 10 ⁶)	NOx Emission Rate lb/MMBtu	Annual NOx Emissions (Tons/Year)	Tons/Year	Percentage
10%	Bituminous	172	194,840	1,018	0.07	35,630	159,210	81.7%
Replaced	Subbituminous	57	63,865	431	0.07	15,085	48,780	76.4%
	Lignite	1	870	5	0.08	200	670	77.0%
	TOTAL	230	259,575			50,915	208,660	80.4%

NOx Example:

Replacing Old Coal Based Units with New Units Summary of Environmental Benefits