Mercury Control for Coal-fired Power Plants – Interaction of Other Technologies

Presented by:
Mark Sankey
 Senior Engineering Specialist

Co-Authors:
Don Koza
 Senior Technical Support Specialist
Michelle Golden
 Senior Environmental Engineer
Ping Wan
 Senior Principal Environmental Scientist
Overview

- Introduction & Background
- Regulations
- Mechanisms of Mercury Control
- Mercury Control Technologies & Interactions
- Technology Logistics
- Conclusion
Regulations

- MATS
 - Mercury
 - PM, filterable (for non-mercury metals)
 - HCl, SO_2 (for acid gas emissions)
- CSAPR – NO_x & SO_2 (Vacated; CAIR – Reinstated; EPA to reissue 3/2013)
- Regional Haze
- NSPS – PM, NO_x & SO_2
- NAAQS – PM_{2.5}
Mechanisms of Mercury Control

- **Adsorption**
 - Powdered Activated Carbon
 - Temperature dependent
 - Effective with halogen present for oxidation
 - Other – e.g. Silicates
- **WFGD Capture**
 - Oxidized mercury is soluble & easily captured
 - Problem of re-emission due to chemical reduction
- **MAXIMIZE OXIDIZED MERCURY**
 - Both mechanisms most effective with oxidized mercury
Control Technologies & Interactions

- **Coal Additives (Br based)**
 - Developed to advance Hg oxidation – halogen-poor coals
 - Know your fuel supply – Hg, S, Cl
 - Impact on downstream equipment – corrosion potential

- **Sodium Solution Injection**
 - Controls SO_3 enhancing PAC utilization
 - Upstream of AH
 - Avoids AH problems
Control Technologies & Interactions

- **SCR Catalyst**
 - Some inherent oxidation of Hg
 - Specialized formulation for Hg oxidation
 - Specialized formulation to minimize SO₃ production

- **Sorbent Injection for Hg Capture**
 - PAC - proven & common technology, halogenated options
 - Temperature sensitive – Varies with various factors
 - SO₃ hinders effectiveness
Control Technologies & Interactions

- **Dry Sorbent Injection for SO₃ Control**
 - Upstream of Hg sorbent injection, generally AH outlet
 - Use of lime or sodium compounds

- **Particulate Collection**
 - Must follow sorbent injection
 - ESP enhancements available
 - PJFF – cake effective for Hg capture
 - PM₂.₅ – Push to PJFF with membrane
 - Maintain cake
 - Optimize cleaning

© 2013 Bechtel Power Corporation | 7
Control Technologies & Interactions

FGD

- **Dry FGD**
 - Spray dryer or CFB type – generally followed by PJFF
 - Downstream PJFF effective for Hg
 - Controls SO$_3$

- **Wet FGD**
 - Oxidized Hg soluble
 - Often effective w/o other technologies
 - Re-emission can be overcome

© 2013 Bechtel Power Corporation
Technology Logistics

- Typical AQCS Equipment - WFGD
Technology Logistics

- Typical AQCS Equipment - DFGD
Conclusions

- **Existing Capabilities**
 - Know your equipment potentials + and -
 - Test for Hg and related species as required

- **Understand Interactions for New Technologies**
 - Invest time for planning
 - Investigate & be aware of new technologies
Mercury Control

Questions?