

Absorption Refrigeration Cycle urbine nlet Conditioning

Luke Buntz ARCTIC Engineer Kiewit Power Engineers Co.

ARCTIC Overview

The Problem

Why chill?

- Increased fuel efficiency (fewer emissions)
- Power production capability and turbine efficiency increase as inlet temperature decreases
- Electricity demand is highest on the hottest days, but as ambient temperature increases air becomes less dense, therefore less power can be produced
 - Power is also the most valuable at these times so recovering power lost due to high ambient provides a significant Return on Investment

Why heat?

- Anti-icing is required in icing conditions to prevent damage to turbine blades
- Aero-derivatives:

• Anti-ice systems typically heat air 10 degrees F above ambient temperature, however power capability decreases as temperature decreases below the "sweet spot" so additional heating enables higher power output

• At part load, heating of the inlet air improves heat rate and emissions • Frames:

• Anti-icing is typically accomplished by using bleed air from the compressor. This results in a two-fold power reduction:

- 1. As inlet temperature increases, power production capability decreases
- 2. Bleed heat robs valuable compressed air from the combustor (ARCTIC eliminates this need)

The Solution

Why ARCTIC?

Operational Flexibility:

- Fast Start Capability:
 - On Aero units ARCTIC can be fully chilling or fully heating within 10 minutes of turbine fire
- Dispatch order:
 - By optimizing the heat rate at the desired power level, plant can be dispatched sooner when preference is given to heat rate
- Peaking profile:
 - Summer Chill to enable maximum power
 - Winter Heat (beyond anti-icing) to enable maximum power
- Load following:
 - Varies inlet air temperature to optimize output and heat rate, regardless of ambient temperature
 - Can enable maximum turndown to maintain a lb/hr emissions limitation
 - Ability to improve heat rate/emissions at part load conditions
- Base load:
 - Constant, maximum power across broad ambient temp range
- Dry Low Emissions:
 - Reduced fuel mapping (constant inlet temperature)
- Emissions reduction ("Green" Plants)
 - For same NET power production as unit with mechanical chiller, less lb of NOx and CO2 produced
 - For same emissions as unit with mechanical chiller, more NET power available

How Does ARCTIC Work?

lewit

- 1. Ammonia-water solution is vaporized in the HRVG
- The rectifier separates vapor ammonia out the top and liquid water to the bottom
- 3. The condenser turns the vapor ammonia to liquid
- 4. The liquid ammonia gathers in the ammonia receiver
- 5. The high pressure liquid ammonia is expanded in the TCV
- 6. The ammonia is evaporated, chilling the water-glycol mixture
- 7. The water-glycol mixture passes through the TIAC coils, chilling the inlet air
- 8. The vapor ammonia is recombined with the water from the rectifier
- 9. The ammonia-water solution is pumped back into the HRVG

5

ARCTIC

10. The cycle repeats

Going Green

- Reuses waste product (exhaust energy)
- For same NET power as mechanical chiller, less lb of NO_x and CO₂
- Ammonia is naturally occurring, readily available, and inexpensive
- Ammonia is environmentally friendly:
 - Ozone Depletion Potential (ODP) = zero
 - R-134a = 0
 - R-123 = 0.02
 - Global Warming Potential (GWP) = zero
 - R-134a = 1300
 - R-123 = 90
- Better heat rate = more efficient use of fuel
- Water recovery from inlet coil condensate

Mode Transition

- Morning Ambient Temperature: 34°F
- Afternoon Ambient Temperature: 64°F
- Although the ambient temperature increased 30°F, compressor inlet temperature only varied 6°F
- Skid changes modes based on ambient temperature
- Hands-off, automated transition
- Only system available that performs both inlet conditioning functions

7

ARCTIC Skid – 2000 Ton Unit

- Skid mounted PLC/MCC
- Closed-loop
- Redundant pumps
- 40' long x 14' wide
- No large components or compressors (eliminating 4160V switchgear)
- Low maintenance/operation costs

Simple Cycle Units

Simple Cycle – ARCTIC Output

Simple Cycle – ARCTIC Heat Rate

GE Frame Simple Cycle Summary

Worst						
Better Best			Base	Evaporative Cooling	Mechanical Chiller	ARCTIC
		Output Gain	158,107	8.7%	14.8%	21.1%
	7FA.04	Heat Rate Reduction*	10,310	-0.1%	3.2%	-2.2%
		Efficiency Improvement	33.1%	0.0%	-1.0%	0.8%
		Output Gain	192,594	7.9%	10.6%	16.1%
	7FA.05	Heat Rate Reduction*	10,085	-1.2%	2.1%	-2.8%
		Efficiency Improvement	33.8%	0.5%	-0.8%	1.1%
		Output Gain	75,360	8.3%	15.0%	22.6%
	7EA	Heat Rate Reduction*	11,812	-1.8%	1.8%	-4.5%
		Efficiency Improvement	28.9%	0.6%	-0.6%	1.5%

* Heat rates based on fuel HHV

- Based on a 100°F day with 35% Relative Humidity
- Mechanical Chiller parasitic load is based on 1.6 kW/ton
- ARCTIC parasitic load is based on 0.11 kW/ton

GE Aero Simple Cycle Summary

rst ter			Base	Evaporative Cooling	Mechanical Chiller	ARCTIC
t		Output Gain	37,606	20.3%	28.1%	35.6%
		Heat Rate Reduction*	9,868	-4.6%	-0.2%	-5.7%
		Efficiency Improvement	34.6%	1.8%	0.1%	2.3%
	IM6	Output Gain	43,887	13.8%	24.7%	32.1%
	PGS	Heat Rate Reduction [*]	9,793	-2.7%	2.5%	-3.2%
	FUS	Efficiency Improvement	34.9%	1.1%	-0.9%	1.3%
		Output Gain	41 653	7 7%	17 3%	25 1%
	LM6	Heat Rate Reduction [*]	9.713	-1.9%	1.8%	-4.5%
	PHS	Efficiency Improvement	35.1%	0.7%	-0.7%	1.8%
		Output Gain	93,917	4.0%	8.4%	10.8%
	LIVIS	Heat Rate Reduction*	9,011	-1.1%	-0.7%	-2.8%
		Efficiency Improvement	37.9%	0.5%	0.3%	1.2%
		Quitaut Cain	02 012	A A0/	11 70/	16 00/
	LMS		03,912	4.4%	11.270	10.0%
	PB	Heat Rate Reduction ^	8,997	-1.3%	0.4%	-4.4%
		Efficiency Improvement	37.9%	0.6%	-0.2%	2.0%
		Output Gain	26,006	13.7%	22.1%	30.2%
	LM25	Heat Rate Reduction*	10,373	-3.1%	0.6%	-5.7%
	+64	Efficiency Improvement	32.9%	1.1%	-0.2%	2.2%

* Heat rates based on fuel HHV

13

ARCTIC Contacts

Chris Mieckowski ARCTIC Product Line Manager 913.928.7304 Chris.Mieckowski@Kiewit.com

Luke Buntz ARCTIC Engineer 913.689.3931 Luke.Buntz@Kiewit.com

ARCTIC

14