# Using Municipal Reclaimed Water for Cooling Water Applications: Review of Two Case Studies

McIlvaine Company Hot Topic Hour on "Power Plant Cooling Towers and Cooling Water Issues"
Thursday Feb. 16, 2012

Larry Schimmoller - CH2M HILL
Global Technology Leader for Water Reuse

### **Agenda**





- Background on reuse of municipal wastewater
- Typical Water Quality Concerns for Cooling Water Applications
- Case Studies
  - Denver Water Recycling Plant
  - Western Corridor Recycled Water System

### Water Reuse is the Recycling of Treated Wastewater for Beneficial Use



# Typical Water Quality Requirements for Cooling Water Applications

- Water quality requirements for cooling water applications vary depending on the metallurgy utilized at the power plant
- Typical concerns when using reclaimed water:
  - Low ammonia (typically non-detect)
  - Low TDS, especially for boiler feed applications
  - Chloride less than 150 mg/L
  - Low phosphorus (<0.5 mg/L) to limit calcium phosphate scaling in heat exchangers.</li>

#### Raw Water Supply:

Customer is responsible for treating the water to meet the following raw water specification or ensure suitable design and metallurgy/materials:

| Parameter                        | Maximum Allowable<br>Concentration in any Raw<br>Water allowed by SPG. | Units     |
|----------------------------------|------------------------------------------------------------------------|-----------|
| Arsenic                          | 0.025                                                                  | mg/l      |
| Biological Oxygen Demand (5 day) | 20                                                                     | mg/l      |
| Cadmium                          | 0.025                                                                  | mg/l      |
| Calcium                          | 70                                                                     | mg/l      |
| Chemical Oxygen Demand           | 50                                                                     | mg/l      |
| Chloride                         | 150                                                                    | mg/l      |
| Chromium                         | 0.1                                                                    | mg/l      |
| Copper                           | 0.1                                                                    | mg/l      |
| Cyanides                         | 0.2                                                                    | mg/l      |
| Electrical Conductivity          | 1150                                                                   | S/cm      |
| Fecal Coliform Bacteria          | 150                                                                    | NMP/100 m |
| Greases and oils                 | 2                                                                      | mg/l      |
| Hexavalent Chromium              | 0.1                                                                    | mg/l      |
| Iron (total)                     | 0.2                                                                    | mg/l      |
| Lead                             | 0.05                                                                   | mg/l      |
| M-alkalinity (as CaCO3)          | 200                                                                    | mg/l      |
| Magnesium                        | 20                                                                     | mg/l      |
| Manganese                        | 0.05                                                                   | mg/l      |
| Mercury                          | 0.001                                                                  | mg/l      |
| Nickel                           | 0.5                                                                    | mg/l      |
| pH                               | Min = 6 / Max = 8                                                      | pН        |
| Phenols                          | 0.1                                                                    | mg/l      |
| Sediment Solids                  | 0.2                                                                    | mg/l      |
| Silica Colloidal                 | 10                                                                     | mg/l      |
| Silica Reactive                  | 20                                                                     | mg/l      |
| Silica Total                     | 20                                                                     | mg/l      |
| Sulfate                          | 300                                                                    | mg/l      |
| Total Dissolved Solids           | 750                                                                    | mg/l      |
| Total Nitrogen as N              | 8                                                                      | mg/l      |
| Total Organic Carbon             | 5                                                                      | mg/l      |
| Total Phosphorus as PO4          | 0.5                                                                    | mg/l      |
| Total Suspended Solids           | 10                                                                     | mg/l      |
| Water Temperature                | Min = 10 / Max = 35                                                    | С         |
| Zinc                             | 0.25                                                                   | mg/l      |

### **Case Studies**

- Denver Water Recycling Plant (Denver, Colorado)
  - Provides cooling water to the Cherokee Power Plant
- Western Corridor Recycled Water Project (Brisbane, Australia)
  - Provides cooling water to Swanbank and Tarong Power Stations



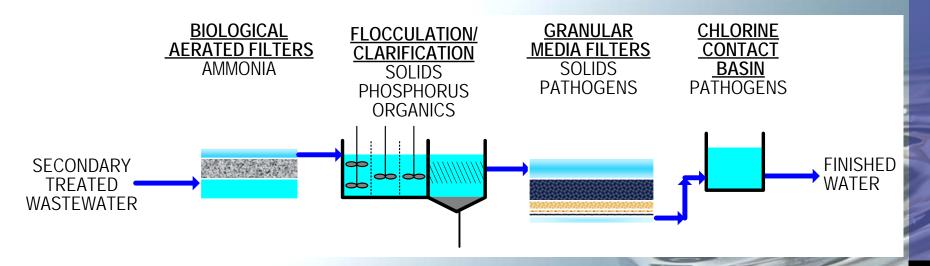
## Denver Water Recycling Project Background

- Integrated Resource Plan (1996)
  - Additional water supply needed by 2013
  - Supply to be provided by conservation, <u>recycling</u>, and misc. improvements
- Recycling water reduces potable water demands
  - At buildout, potable demand reduced by the equivalent of 40,000 households
- Customers identified
  - Xcel Energy 10 mgd cooling water
  - Parks
  - Golf courses
  - Zoo
  - Commercial and industrial users



### Water Quality Requirements

- Irrigation Use (Colorado Regulation 84 for Category 3 unrestricted access areas):
  - E. Coli: none in 75% of samples and 126/100 ml max
  - Turbidity: < 3 NTU (monthly average)</li>
  - Filtration and disinfection required


### Power Plant Cooling Water:

- Phosphorus: < 0.6 mg/l to prevent calcium phosphate scaling
- Ammonia: non-detectable to avoid stress corrosion cracking of admiralty metals

# Denver Water Recycling Plant

- Treatment capacity = 30
   MGD, non-potable reuse
- Cooling water = 10 MGD, supplied to Xcel Energy's Cherokee Power Plant





## Western Corridor Recycled Water Project - Background

 Southeast Queensland has had the worst drought on record from 2001 – 2008







### **Major Treatment Processes**



- Production capacity of 70 ML/d (18.5 mgd)
- Provide multi-barrier treatment process
- Very high quality water (low TDS and hardness) for power plant uses
- Meet all Australian drinking water guidelines

### **Luggage Point AWTP Site**

Chemical Building

Membrane & UV Building



Raw Water Storage

Flocculation / Clarification

**Centrifuge Building** 

**Thickener** 

### **Luggage Point AWTP**

#### Flocculation / Clarification



**Microfiltration** 



#### **Reverse Osmosis**



**UV / Advanced Oxidation** 



### Summary





- Reclaimed municipal wastewater is a good candidate for power plant cooling water
- Water scarcity is increasing it use in this application
- Typical water quality concerns include TDS, chloride, ammonia, orthophosphate, bacteria – all can be addressed with proper treatment

### **Questions?**

Larry.Schimmoller@ch2m.com

