we find a better way

LST

G

Design, Operation, and Maintenance Considerations

Landon Tessmer Innovative Steam Technologies (IST)

McIlvaine Company Hot Topic Hour March 7, 2013

Presentation Overview

- OTSG vs HRSG Comparisons
- Design Considerations
 - Material Selection
 - Mechanical Design for Thermal Cycling
- Operational Considerations
 - Water Treatment
 - Operation & Control
- Questions

Heat Recovery OTSG for Power Generation

Direct Fired OTSG for Enhanced Oil Recovery

Purpose of the heat recovery OTSG

OTSG vs HRSG

LM6000 Installation – overall size comparison

BLOWDOWN

Superheated Steam Out

"Drumless" Design

Gas Turbine Exhaust Gas

- All tubes thin-walled \rightarrow low thermal mass \rightarrow fast cycling
- Compact lightweight pressure bundle
- Simple once through steam path
- Zero Blowdown (no blowdown treatment)

Design Considerations - Metallurgy

- Incoloy 800/825 tubing designed to mitigate the following failure modes:
 - Dew point corrosion (water/acid)
 - Allows cold feedwater 60° F (17° C)
 - Flow assisted corrosion
 - Thermal shock
 - Creep/fatigue failures
 - Cycling/daily start stop

Thin wall tubes & mechanical design

- 409SS & 316SS Liners
- CS, 409SS, & 316SS brazed fins
- Allows dry running capability up to 1100° F (593° C)

Advanced Metallurgy – Fin Materials

Main Internal Components for Cycling Applications

Bundle Growth – Thermal Cycling

OTSG and Plant Feedwater Treatment

- No blowdown so water quality critical
- Requires demineralized and polished feedwater.
 - Cation Conductivity Limit: 0.25 µS/cm
- IST recommends stainless FW piping from polisher to OTSG (particularly for cycling plants)
- Eliminates:
 - Tube scaling
 - Deposition and carry over
 - Active chemical treatment

OTSG Feedwater Specification

Parameter	Target Value
Water Cation Conductivity (µS/cm)	<0.25
pH (stainless	8 to 8.5
piping) (CS	9.3 to 9.6
piping)	
Dissolved Oxygen (ppb) (stainless piping) (CS piping)	<300 <7
Sodium (ppb)	<6
Chloride (ppb)	<6
Sulfate (ppb)	<6

Parameter	Target Value
Iron (ppb)	<10
Copper (ppb)	<2
Total Organic Carbon (ppb)	<100
Hardness (ppb)	<1

Note: Typically, the water quality required in gas turbine injection applications is more stringent than the OTSG FW spec.

Typical Condensate Handling Diagram

Condensate Polishing Options

- Mixed bed polisher
 - Contains both acid and caustic resins within the vessel.
- Precoat (Powdex[®]) Polisher
 - Ideal where polishing and filtration are required due to suspended solids in the condensate. Filter elements are pre-coated with ion exchange resin.

Pre-coat Polisher Technology

Benefits of Clean Water

- Eliminates need for blowdown and its treatment (3% energy savings)
- Extended boiler life (10 15%)
- Reduced maintenance and downtime
- Eliminates tube scaling
- Minimize need for active chemical treatment
- Minimizes chemical costs

Clean water benefits the entire plant

Simplified Control System

- Patented control system maintains constant temperature (and/or pressure) by regulating feedwater flow
- Feedforward control loop signals changes in gas turbine output
- Feedback control loop adjusts final trim of feedwater valve
- Pressure is controlled by plant downstream equipment such as pressure regulating valve or steam turbine
- All I/Os monitored by plant DCS

Typical OTSG P&ID

OTSG Start-Up Curve

(Start Permissive approx 12 min from GT ignition without SCR/CO)

—— HP Flow —— LP Flow …… LP Pressure …… HP Pressure — - HP Steam Temp After Att — - LP Steam Temp After Att

we find a better way

Questions?