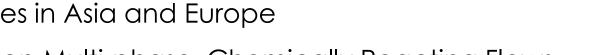
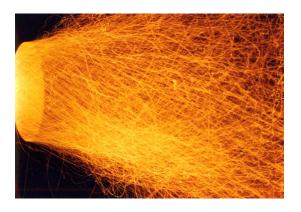
Coal & Biomass Co-firing: Advanced Modeling Tools and Their Application

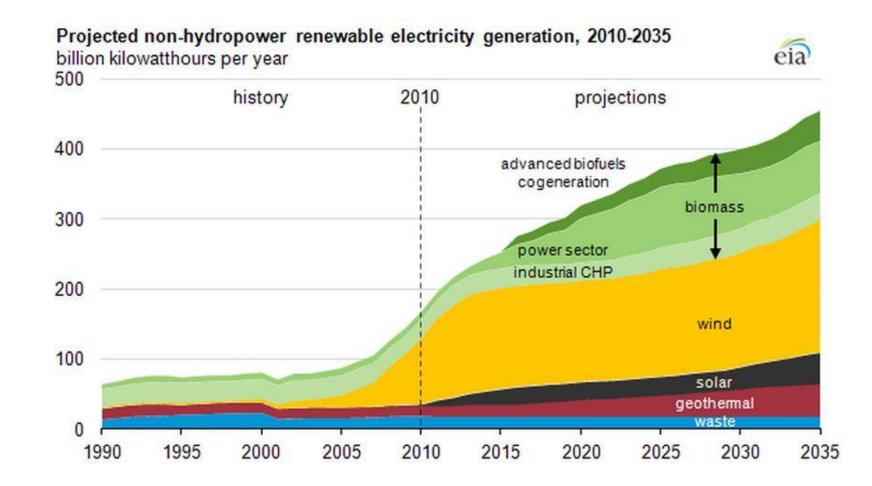


McIlvaine Hot Topic Hour Co-Firing Sewage Sludge, Biomass and Municipal Waste December 13, 2012


Reaction Engineering International

Objective: Solve Challenging Industrial Combustion Problems Using Specialist Talent & Technology

- Privately Held Consulting Firm
- → Founded 1990
- Approximately 25 Employees
- Located in Salt Lake City, Utah
- Affiliates in Asia and Europe



- Focus on Multi-phase, Chemically Reacting Flows
- Capabilities Include Advanced Modeling and Testing

Biomass Power: The Past & Future of Renewable Power?

Role of Biomass

Wind and Biomass dominate projected increases in renewable power

Biomass co-firing drivers:

- US State level RPS
- Favorable economics in regions with forest residues
- European Union Directive 2009/28/EC
- UK incentives issued through Renewables Obligation Certificates (ROCs)
- → May 2012 projections based on the Clean Energy Standard Act of 2012 see biomass growth increasing from 4x (Nov 2011) to 7x (May 2012)

Utilization Issues

Fuel collection, storage, processing and handling

Combustion

- Combustion stability
- Burnout
- Temperature / Heat transfer
- Efficiency

Emissions

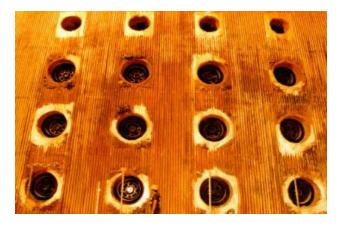
- Carbon Dioxide
- Sulfur Oxides
- Mercury
- Fine Particles
- Nitrogen Oxides
- Carbon Monoxide

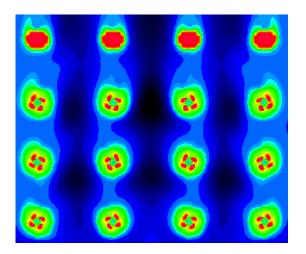
Operational Impacts

- Ash Deposition, Slagging, Fouling
- Catalyst deactivation
- Fly-ash properties
- Corrosion
- Economics
- Regulatory

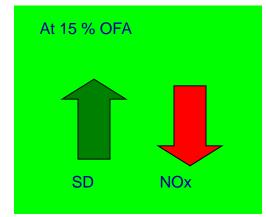
Operational Impacts

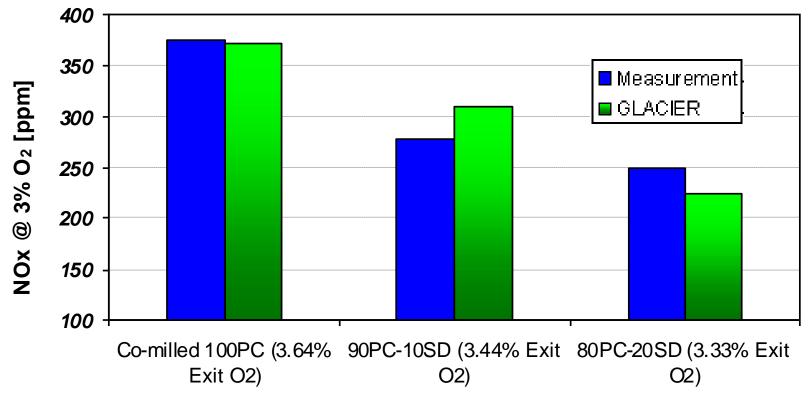
- Deposition, Slagging, Sintering and Fouling
 - Depends on deposition rates and ash chemistry


Fenger, L.D., The use of Straw as Energy Source-example Denmark, Proceedings of European Biomass Conference, Graz, 2008

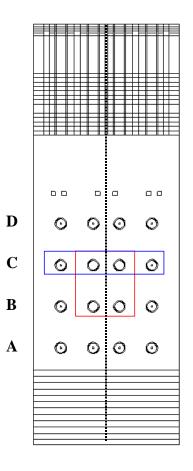

- 100% biomass systems more susceptible
- Co-firing less susceptible (minimal impacts with <10 wt%)
- Potential for corrosion
 - Chlorine
 - Alkali

CFD Tools for Boiler Evaluations


- Two-phase, turbulent, reacting flow in boilers is inherently complex
- Additional Complexities of biomass as a co-firing fuel
 - Devolatilization rates and product speciation
 - Limited availability/predictability of char oxidation rates
 - Particle size and associated difficulties in describing intra-particle heat and mass transfer
 - Particle shape and associated difficulties describing particle dynamics
 - Unique NOx Chemistry



Pilot-scale Validation for NOx Emissions



Co-firing Injection Evaluations

- → 150 MW front wall-fired boiler
- 16 Low NOx burners in 4 elevations and OFA
- Co-firing scenarios
 - 7% Green Wood Chips based on total heat input.
 - Multifuel burners in "C" row.
 - Mulitifuel burners at center 2 locations in B, and C rows
- Determine operational impacts
 - NO_x Reduction
 - LOI
 - + CO

Deposition&Slagging of Complex Fuel Blends

Predict deposition impacts w/ GLACIER CFD software

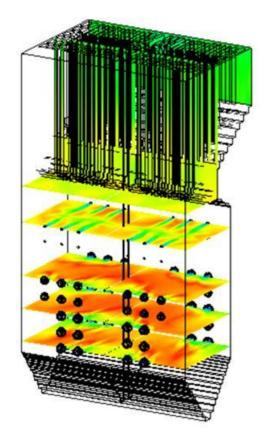
- Deposition patterns and rates
- Size, shape, composition of fly ash
- Fly ash viscosity = f (composition, temperature, local stoichiometry)
- Deposit sintering = f (deposit thickness, composition, temperature, time)

Fuels characterization

- CCSEM (bulk ash elemental used for normalization)
- Partial Chemical Fractionation

Model application experience

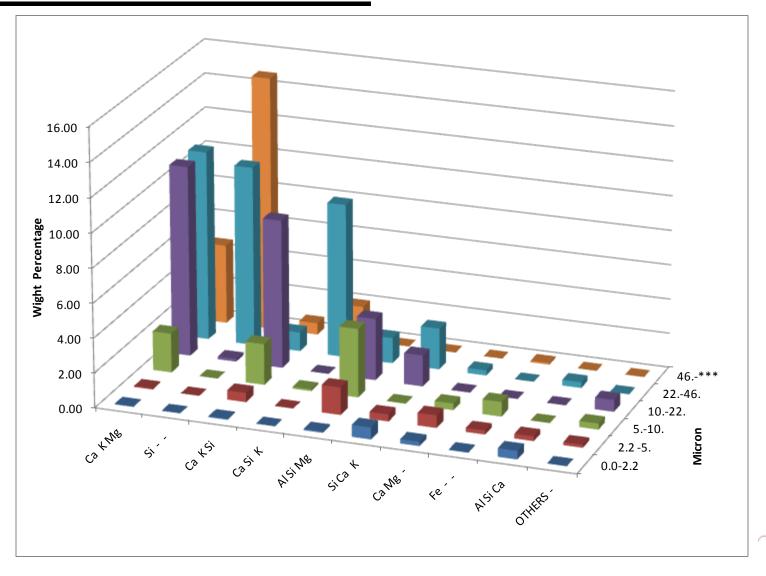
- Bituminous SubBituminous blends
- Bituminous Pelletized biomass blends
- 100% biomass



 Independent ongoing efforts to evaluate the impacts of torrefied biomass and oxy-firing

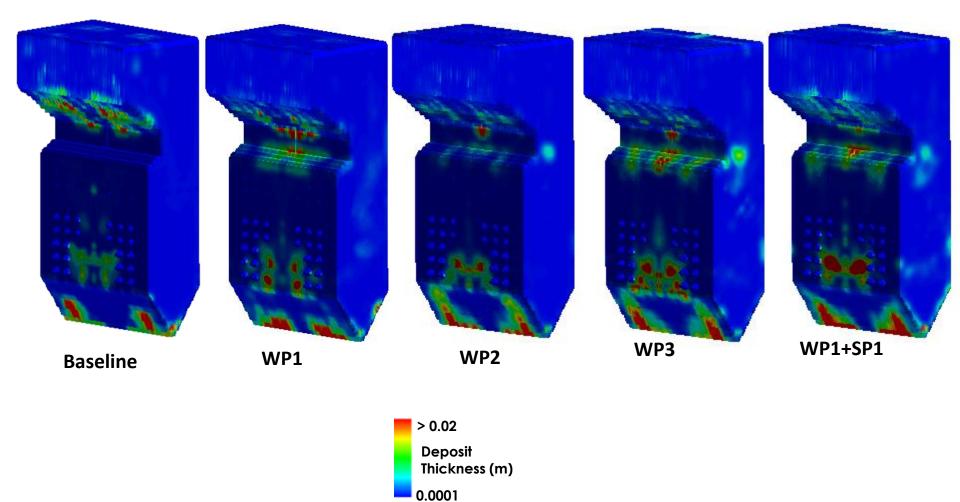
Case Study: PC to Biomass Pellet Co-firing

- > 660 MW opposed-wall, pulverized coal fired unit
- Comparison of Coal-only and 60% biomass pellet co-firing:
 - 3 woods (WP1, WP2, WP3)
 - 1 wood & straw mixture (WP1&SP1)
- Overall simulation results indicate:
 - Modest increase in FEGT for biomass firing
 - Some reduction in wall heat transfer
 - 35-40% decrease in NOx emissions
 - Similar CO emissions
 - Slight decrease in carbon in flyash

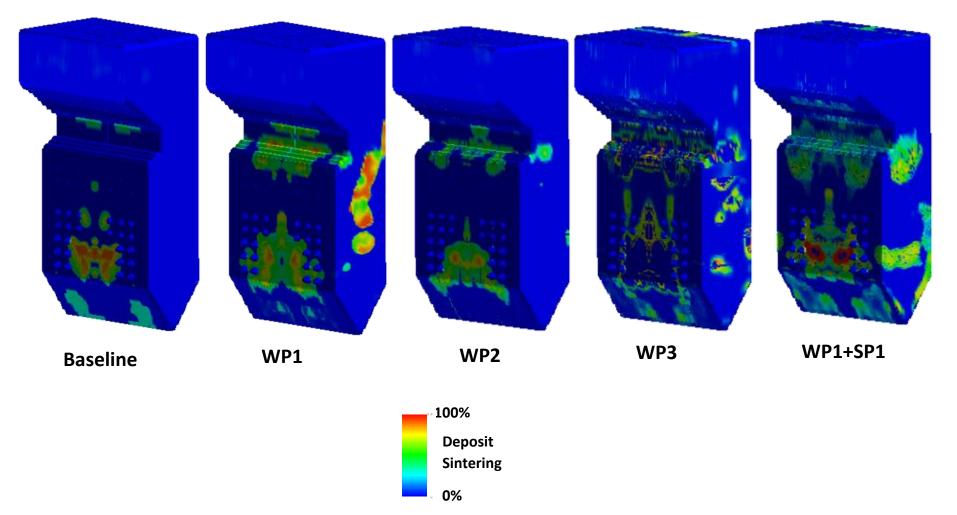


Fuel Properties

Proximate Analysis		Coal only	WP1	WP2	WP3	SP3
Volatiles Matter	[wt % ar]	27.33	80.80	80.40	77.40	71.80
Fixed Carbon	[wt % ar]	43.16	<mark>14.10</mark>	15.20	16.90	15.30
Moisture	[wt % ar]	14.47	4.60	4.10	4.20	7.40
Ash	[wt % ar]	15.04	0.50	0.30	1.50	5.50
HHV	[kJ/kg]	23523.5	18769.7	19080.4	18775.6	16083.4
LHV	[kJ/kg]	22337.8	17458.2	17741.5	17435.6	14816
Ultimate Analysis						
С	[wt % ar]	59.70	49.42	48.91	48.86	41.67
Н	[wt % ar]	3.73	5.64	5.75	5.75	5.00
S	[wt % ar]	1.24	0.01	0.01	0.02	0.07
0	[wt % ar]	4.67	39.62	40.62	39.30	39.86
N	[wt % ar]	1.15	0.22	0.31	0.37	0.50
CI	[wt % ar]	0.260	0.003	0.003	0.021	0.114
H2O	[wt % ar]	14.47	4.60	4.10	4.20	7.4
Ash	[wt % ar]	15.04	0.50	0.30	1.50	5.5


WP1 - Fly Ash Predicted Fly Ash Composition and Size Distributions

REACTION ENGINEERING INTERNATIONAL


13

Deposit Thickness After Four Hours

Deposit Sintering Extent After Four Hours

REACTION ENGINEERING INTERNATIONAL

Summary

Computational Tools

- Detailed models for describing mineral matter transformation, ash deposit build-up and sintering are available
- These models have been implemented in a CFD framework and applied to multiple full-scale coal-fired boilers resulting in predictions that are qualitatively accurate
- Extension of this approach to biomass co-firing has also been and appears qualitatively reasonable
- Estimation method for CCSEM results for bituminous coal using only bulk ash elemental analysis appears promising

Ash Behavior: Coal-only vs Biomass/Coal

- Deposition patterns/rates, sintering extent, and corrosion rates can vary extensively as a function of biomass source
- Ash management can range from very similar to significantly more challenging
- Waterwall corrosion rates can be significantly reduced

