The Avogadro Group, LLC

Source Emissions Testing and Emissions Specialists

Can your unit pass a Particulate Emission Compliance Test?

Kevin Crosby The Avogadro Group, LLC California - Oregon - Arizona

McIlvaine Hot Topic Hour, April 25, 2013

The Test Method Defines Compliance

- The Process and its Emission Controls determine actual emissions
- But the Test Method defines the results used to determine compliance
- There is a difference and it can be important!

Methods have been developed in attempts to measure actual emissions of: Filterable PM and Condensable PM

The objective is accurate results for:

- Primary, Directly emitted PM, PM10, PM2.5
- Gaseous Precursors to formation of **Secondary** PM2.5 (SO₂, NO_X, VOC, NH₃)

What is Particulate Matter? Mass/volume measured at Ambient Monitor Emissions - Mass/volume measured at Stack

Primary Particulate

- **Filterable PM** (*primary "front half"*)
 - Solid or liquid particles at stack or filter temperature PM, $PM_{10} \& PM_{2.5}$
- **Condensable PM** (*primary "back half"*)
 - Vapor or gas at stack conditions Organic and inorganic
 - Condenses and/or reacts upon cooling and dilution in ambient air, forms solid or liquid particles <u>immediately</u> after stack discharge
 - All assumed to be in the PM_{2.5} size fraction

Secondary Particulate

- Vapor or gas at stack conditions <u>and</u> after discharge
- Forms PM by chemical reactions in atmosphere downstream of release point

Filterable PM Measurement

 Total FPM - EPA Method 5 and Method 17 (1970's)

- Measure Filterable PM only, all sizes of particles together

- PM10, PM2.5 EPA Method 201A (1990, updated 2010)
 Aerodynamic separation of larger particles, measure particles less than 10 µm or less than 2.5 µm, or both
- Measure concentration in units of:

Mass of PM collected per Volume of stack gas sampled

Typical units: grains / dscf

(7000 grains in a pound)

or mg/dscm

EPA Method 17 – In-stack Filter

EPA Method 5 – Heated Filter

Filterable PM Measurement

- Solid particles capture not temperature dependent - fly ash, elemental carbon (soot), etc.
- Liquid particles capture is temperature dependent

Different compounds condense at different temp's

- sulfuric acid droplets (condensed SO₃+H₂O)
- semi-volatile organics (organic carbon śmoke)

Filter temperature affects capture, defines results EPA Method 5 – 250°F – some sulfuric acid captured EPA Method 5B – 320°F – no sulfuric acid EPA Method 17 – In-stack filter at stack temperature

- what's captured will depend on stack temp
 cannot be used in "wet" stacks such as scrubbers

Compounds in vapor phase at filter temp pass through

Filterable PM₁₀ Measurement

• EPA Method 201A – 1990 Version

Aerodynamic separation - collection of particles < 10µm (similar to separation in ambient monitor)

In-stack Filtration

- Can't be used in "wet" stacks (FGD, etc.) because water droplets may form within cyclone and filter will get wet

- Usually limited to temperature < 500°F

PM10 Cyclone

In-stack Filter Holder

Filterable PM₁₀ – PM_{2.5} Measurement

EPA Method 201A – 2010 revision

PM10 and/or PM2.5 Cyclones for Aerodynamic separation of larger particles (similar to ambient monitor)
In-stack Filtration, not for "wet" or "hot" stacks

EPA Method 201A – In-stack Sizing and Filtration

Filterable PM, PM10, PM2.5 Measurement Issues

Hot Stacks > 500°F Probably can't use 201A, so: Measure Total FPM, call it all PM10 or PM2.5 Wet Stacks (scrubber exhaust) Can't use 201A, so: Measure Total FPM, call it all PM10 or PM2.5 - This can over-represent PM10 or PM2.5 emissions! Large droplets would make larger particles

NOTE: Wet-stack methods are in development!

- The larger droplets will be cut out of sampling
- Then the larger particles will be cut out, too
- one method includes dilution, the other does not

The method development needs FUNDING!

Filterable PM, PM10, PM2.5 Measurement Issues

Low FPM emitters with low emission limits have other issues:

Method selection – Tester technique

Contamination –

- Dirty apparatus, glassware, recovery area – all methods

- Corrosion of stainless steel cyclones for PM10 or PM2.5 can cause higher results than for Total PM!

Detection limit – Sample volume

- Measurement can be 2 mg or less
- DL between 0.2 and 1 mg
- Uncertainty is about 1 to 5 mg

Method 5 collects more sample more quickly – this can help

Choose the **method** and the **tester** wisely!

Traditional CPM Measurement

- Designed to capture what went through the filter:
 - inorganics (SO₃/Sulfuric Acid Mist, etc.)
 - organics (semi-volatile)
- SCAQMD, CARB, ODEQ, WDOE methods (1960's, 1970's) – include Filterable and Condensable PM

(we have been measuring CPM on the West Coast for decades...)

- EPA 202 (1990 version "Old 202")
- Sample bubbles through water in impingers
- Collects CPM really well at < 68°F
- But Gases dissolve in that water, too...

Maximized gas-liquid contact

Traditional CPM Measurement

Gases dissolve and create **artifact** "CPM" some SO₂ gets oxidized to sulfate

SO₂, NH₃, HCI in solution dry down to:

- Ammonium Sulfate, Ammonium Bisulfate
 (forms from SO₂ oxidation to sulfate in solution)
- Ammonium Chloride (forms readily some of this may be actual CPM rather than artifact)
- The artifact salts confuse the division between Primary PM2.5 and Secondary PM2.5 formed from precursor gases

SO₂, NH₃, HCl get counted as gaseous emissions AND as PM emissions!

Revised CPM Measurement

 EPA 202 (2010) - No bubbling of sample through water

Revised CPM Measurement

Revised CPM Measurement

Minimizes gas-liquid contact

Collects condensate (including water) at <85°F Gases should dissolve less; SO₂ stripped out by post-test purge with pure Nitrogen

Hypothesis: Much less artifact

- This can work quite well on stacks with little or no ammonia
- But when ammonia is present, we still measure artifact ammonium salts (often about as much as with the old methods)

CPM vs. SO2

Various types of sources, x-axis is not linear, Highest results are not from the highest SO2

Same data as above, correlates more closely with NH3 than with SO2

CPM Emission Measurement Comparison by Old and New EPA Method 202

CPM Methods Comparison

- New 202 can (in some cases) measure less sulfate artifact than the old Method
- Amount of artifact in either method depends on concentration of NH₃ more than SO₂ (excess SO₂ gets purged out)
- Significant artifact remains in new 202 results when Ammonia is present
 - our Hypothesis is not proven
- Is there a solution?

Dilution Sampler Concept

Stack sampling of Primary PM2.5 by CTM-039

Sample "emitted" into a stream of air

Dilution Method CTM-039 (2004)

- Designed to emulate dilution of stack emissions in ambient air
- Can sample PM10 and/or PM2.5 (using the same in-stack cyclones as 201A) Can also be used on wet stacks (without the cyclones)
- Condensables form in the same way as in actual emissions – EPA's Gold Standard
- Primary PM2.5 particles and CPM all sampled together (like ambient air sampling)
- Disadvantage: Expensive new equipment, Not widely embraced
- Case studies...

Methods Comparison for CPM

- Combined-cycle GT with SCR too close to detection limit to tell
- Foundry SO₂ and semi-volatile organics Old 202 highest, New 202 lower (probably captured less SO₂), CTM-039 lowest (apparently captured even less SO₂, but all the methods captured the semi-volatile organics)
- Boiler A Biomass, SNCR, baghouse SO₂ and NH₃ were present New 202 lower, captured less SO₂ artifact
 measured emissions still above permit limit New 202 with ammonia turned off (NO_X over limit)
 eliminated ammonium sulfate artifact, nice low result CTM-039 with ammonia on – unit passed, even test A2!
- Boiler B Biomass-coal, SNCR, baghouse SO₂ and NH₃ plus HCl CTM-039 helped some at higher emission levels
 - But its results were similar to Method 202 at low emission levels...

Methods Comparison for CPM

- CTM-039 can greatly reduce artifact from NH₃ and SO₂ in some cases (boiler A passed test using this method!)
- CTM-039 can have a higher blank background (there is more surface area of apparatus to rinse and recover sample from)
- So its Detection Limit can be a bit higher than for 201A-202
- Let's look closer at the Boiler B case study to illustrate other issues...

Methods Comparison Case Study Solid Fuel w/SNCR, 2 Series of Tests

Case Study Comparison

- CPM residue analyzed for Sulfate, Chloride and Ammonium ions
 reducing levels of SO₂, HCI and especially NH₃ lowers CPM
- Series 1 shows the difference between 5-202 and 201A-202 was mostly in the FPM rather than CPM (as expected – Filterable PM10 < PM)
- Series 2 shows CTM-039 was found to greatly reduce artifact ammonium sulfate, But ammonium chloride remained!
- Do actual ammonium chloride particles form? The results indicate actual CPM formation from NH₃ and HCI -But the stack had no visible plume, so ammonium chloride might also be artifact

- Does it form on the filter fibers during sampling? On the internal walls of the sampler? Or is it real emissions? *More study needed*

Results will depend on which method is used, and on the concentrations of NH₃, SO₂ and HCI

Case Study Experience

- New Method 202 gets better CPM results in some cases, barely any better in others
- Dilution such as CTM-039 can help CPM results greatly in some cases
- We have learned how to run CTM-039 very well
 any new method takes experience to run well
- We know enough so far to understand that it might not be "the solution" for all cases
 - especially with NH_3 and HCI forming NH_4CI

Conclusions

- The test method defines the results
 - Not all can/should be used everywhere choose wisely, discuss with your testers
 - Match carefully to the stack gas conditions
 - Consider likely test results when designing emission controls and fuels and other commodities used
- The wet stack methods may become important tools for FPM
 one of them will help FPM only
 - the other includes dilution, so may also help CPM Funding will make the methods better, and get them sooner
- Nuances of testing technique can be critical, and make more difference at lower emission limits
- Use very **competent testers** to get the best results
 - cheap results are <u>not inexpensive</u>

Questions ???

Kevin Crosby

Technical Director kcrosby@avogadrogroup.com

The Avogadro Group, LLC

Source Emissions Testing and Emissions Specialists