SCR for NO_x Control in Coal-fired Power Plants

The McIlvaine Company April 7, 2011 Hot Topic Hour on *New FGD and DeNOx Approaches*

> Ken Jeffers Sr Applications Engineer

SCR Basics – Quick Review

- SCR = <u>Selective</u> <u>Catalytic</u> <u>Reduction</u>
- Purpose is to reduce NO_x (NO & NO₂) from combustion exhaust
- Ammonia (NH₃) is injected into flue gas as reducing agent. Flue gas passes through catalyst layers installed in a reactor
- NH₃ reacts with NO_x on the catalyst surface to form nitrogen and water vapor

$$4NO + 4NH_3 + O_2 \xrightarrow{Catalyst} 4N_2 + 6H_2O$$

$$2NO_2 + 4NH_2 + O_2 \xrightarrow{Catalyst} 3N_2 + 6H_2O$$

SCR Catalyst Types

Plate-Type

- Ceramic material on SS substrate
- Individual flexible plates
- Rectangular flow channels
- Ideal for particulate-laden flue gas

Honeycomb

- Homogenously extruded ceramic
- Rigid structure, square channels
- High cell density, high surface area
- Ideal for particulate-free flue gas

SCR Presence in the US

- Appeared in late 1980s / early 1990s
- Proven technology for achieving low NO_x emission rates
- ~260 Utility coal-fired units with SCR (135,000 MW)
- 100s of combustion turbines (SC/CC)
- 1000s of stationary diesel engines
- Marine applications
- Off-road mobile applications
- On-road mobile applications

- High-dust SCR configuration (directly downstream of boiler outlet)
- Reactors with 2 or 3 initial catalyst layers, 1 or 2 empty spare layers
- 80-90% deNOx, emission rates < 0.05 lb/MBTU
- ≤2 ppm NH₃ slip at end of catalyst lifetime
- Catalyst management a major concern due to fly ash plugging and deactivation
 - Frequent catalyst change-out, 2-3 years between additions/replacement
 - Replacements with new, used, regenerated catalyst

New Approaches and Developments for SCR

- >90% deNOx with low NH_3 slip
- New applications
- Catalyst product improvement
- Hg oxidation, co-benefit

High deNOx, 90-95%+

- Traditional approach for high deNOx
 - over-injecting ammonia
 - excess catalyst volume
 - Trade-offs include higher cost and high ammonia slip
- Improve NH₃-NO_x mixing for low ammonia slip (< 2 ppm)
 - $NH_3:NO_X$ distribution $\leq 5\%$ RMS typical for up to 90% deNOx
 - For higher deNOx, NH_3 :NO_X distribution $\leq 2.5\%$ RMS
 - Sophisticated flow modeling tools (CFD, physical) used for design
- Development of advanced NH₃ slip control catalysts
 - High deNOx, low NH₃ slip
 - Extend catalyst operating life

New SCR Applications

- SCR for US lignite-fired units
 - High ash concentration, high alkali concentrations (K, Na) risk for fast catalyst deactivation, fouling
 - First TX lignite-fired unit with SCR started in 2009
 - 3 units now operating
 - Investigating SCR for ND lignite firing
- Investigating use with cement kilns
 - Produce high NO_x
 - High ash exhaust gas high risk for catalyst
 - SCR would likely be in "low-dust" configuration, downstream of ESP or baghouse

Other "Challenging" SCR Applications

- Flue gas with particulate deactivates catalyst poisoning, fouling, erosion
- Biomass combustion high risk of poisoning by alkalis and phosphorus
- Waste (trash) combustion high risk of poisoning by heavy metals and acid gases
- Tail-end SCR configuration downstream of particulate collection
 - Prevents fast catalyst deactivation
 - High cell density/surface area catalyst, lower volume requirement
 - Allows long catalyst lifetime, avoid frequent catalyst maintenance
- Trade-offs with Tail-end SCR
 - Position where flue gas temperature is low
 - Operating target of 400 540 °F may require flue gas reheating
 - Cost to install and operating flue gas reheating equipment

Tail-End SCR

- Typical configuration for European WTE plant SCR installations
- SCR after scrubber/particulate collection equipment
- Long catalyst life expected
- Special catalyst formulations for low temperature, 400 540 °F
- Low concentrations of SO₂, SO₃ required

Continuous Catalyst Product Improvement

- High deNOx activity, low SO₂ oxidation activity reduce volume, cost
- Poison resistance extend catalyst life
- Special formulations for high temperature operation
- Low temperature operation
- Ammonia slip control extend catalyst life, achieve high deNOx rates
- Enhance Hg oxidation

Hg Oxidation, $Hg^0 \rightarrow Hg^{2+}$

- Mercury emission control from Coal combustion
 - Activated Carbon injection or other Novel sorbents
 - Capture in wet FGD
 - These methods work better on Hg²⁺
- Hg oxidation is a co-benefit of SCR catalyst
- Hg oxidation rate strongly dependent on
 - Presence of halogens in flue gas Cl, Br
 - Temperature, < 700 °F
 - Catalyst formulation and volume
- Catalysts being developed with enhanced Hg oxidation capability while preserving performance on deNOx and SO₂ oxidation

Ken Jeffers Sr Applications Engineer ken.jeffers@jmusa.com 678.341.7523

Johnson Matthey Catalysts LLC 1121 Alderman Dr, Suite 204 Alpharetta, GA 30005

