Coal Gasification Technology for Coal-Fired Power Plants

By CastleLight Energy Corp. Keith Moore – President

See: www.castle-light.com

December 12, 2013

DISCLAMER

Information herein is best estimates of the presenters and subject to change. No guarantees or warrantees implied or given.

CastleLight Energy Corp.

Objective:

Re-engineer coal-fired power plants to reduce operating cost, and generate very competitive electricity with very low emissions.

Approach:

Apply <u>coal beneficiation</u> and <u>coal-gasification</u> processes to existing coal-fired power plants

Conventional Coal-Fired Power Plant

with Back-End Emission Controls $SO_2 = FGD + Limestone; NO_x = SCR + Ammonia;$ $SO_3 = Trona ?, Hg = Activated Carbon ?$

Coal-Fired Power Plant

Re-Engineered with Hybrid of Coal-Gasification SO₂ & NO_x Controls Right in the Combustion Step

Typical Pulverized Coal-Fired Power Plant 500 MW w/5 Mills – "Direct Fired" Pulverized Coal

Re-Engineered Power Plant "Indirect Fired" with Coal-Beneficiation Modifications

Re-Engineered Power Plant Coal-Beneficiation Modifications

Add Coal-Beneficiation Modules – One for each coal mill

1. Re-route coal mill sweep gas:

Use the hot inert (low O_2) boiler exhaust vs. hot air Improve safety - eliminate mill fires & puffs Dry the coal (from >20% to <10% moisture)

- Separate the powdered coal from sweep gas with bag house: Direct wet sweep gas to boiler stack
 Process powdered coal to extract volatile hydrocarbon oil
- Separate carbon particles from oil vapor with cyclone: Meter coal carbon with limestone added to furnace Condense and collect oil from each mill

<<<< Sell the oil and pay for the coal! >>>>

Coal Beneficiation Process Powder River Basin (PRB) Low Rank Coals

- Coal Characteristics PRB :
 - Low in Btu
 - High in Moisture
 - High in Ash
 - High in Mercury

~ 8300 Btu/Lb. 20 - 30% 10 – 15% 130 to 150 ppb

Coal Beneficiation Target - PRB Coals :

- Increase Btu
- Increase Btu
 Reduce Moisture
 Reduce Ash
- Reduce Ash
- Compliance Mercury

~ 10,000 Btu/Lb. +20%) (- 50%) (- 50%) 10 – 12% 7 – 10%% ~36 ppb

- EPA CAMR Compliance Mercury (Hg) :
 - Existing Plants = 4.0 lb./Trillion Btu or ~ 36 Parts / Billion
- **Oil Production Example:**

500 MW Electric Generation: Fires 12,000 T/day PRB; cost =\$360,000/day; **Oil Product**: <u>~ 5000 barrel/day crude oil</u> @ \$72/BBL = \$360,000/day income **Coal By Product**: <u>10,000 T/day high quality coal-fuel</u> for power plant May show as a Carbon-Neutral Process (No CO₂ increase!)

"An Oil Well in the Coal Pile"

The Clean Combustion System (CCS) Hybrid of Coal-Gasification & Combustion Schematic

CCS Process Steps

SO₂ & NO_x emissions control right in the combustion step

- An entrained-flow gasification of powdered coal; Creates a hot, fuel-rich gas, and frees the sulfur from the coal,
- Limestone provides calcium, captures the sulfur in the coal,
- Forms calcium sulfide (CaS) a solid particle,
- High temperatures melt the coal ash (alumina & silica) and encapsulate the CaS; forms liquid slag – drains as bottom ash,
- At these conditions, nitrogen is molecular N_2 (NO_x < 50 ppm),
- Clean hot gases CO, H₂ and N₂ enter boiler & cool,
- Staged over-fire air completes combustion to CO₂ & H₂O in boiler (<2300°F, where NO_x formation is frozen).

Re-Engineered Power Plant

Indirect Fired with Coal-Beneficiation & Coal-Gasification Modifications

Opposed-Wall Fired Boiler 500 MW – 24 Wall-Fired PC Burners

CCS Re-Engineered Wall-Fired Boiler Replace Burners with 24 new CCS Burners & 6 GC's

CCS-Tangential[™] Boiler Retrofit

CCS-Cyclone® Industrial Steam Supply

Design Capacity (MCR): 165,300 lb./h Steam (74 T_M/h)

Features:

- Smallest Boiler Foot print per MW_T
- Largest Steam Output per Ton of Steel
- Internal SO₂ & NO_x Emissions Control
- • Near Zero SO₃ emissions
- High Combustion Efficiency (Reduced CO₂—Near Zero LOI)
- Fires most all coal types
- PC Coal-fired w/Limestone added
- Slag Screen Fly Ash Removal
- • Wet bottom slagging operation
- Clean Furnace Walls
- Bottom Ash / Fly Ash is saleable
- No waste water disposal
- Affordable & Rapid Delivery

Re-Engineered Power Plant with CCS & Coal Beneficiation Processes

Stack Emissions Estimate* firing PRB coals (1.2 lb. SO₂/mm Btu Coal)

- $SO_2 = <0.2$ lb./mmBtu (< 105 ppm) ~80% SO_2 reduction
- $NO_x = < 0.10 \text{ lb./mmBtu} (< 75 \text{ ppm})$
- CO = < 300 ppm
- LOI = < 1% (high efficiency combustion)
- $SO_3 = < 0.1 \text{ ppm}$ (condensable particulate)
- Mercury = < 40 ppb
- Particulate = < 0.03 lb./mmBtu (bag house)
- Boiler Efficiency = 2 10% increase

Preliminary estimates of performance, measured after bag house – no guarantees

Rockwell International

25 x 10⁶ Btu/hr (1 ton/hr) Test Facility (1990)

LNS-CAP Facility

ESSO Site, Cold Lake, Alberta Canada 50 mmBtu/hr – 3T/hr PRB Coal

© Copyright 2013

© Copyright 2013 _____

View Forward to Burner

Demonstrated Emissions

SO₂ - 0.2 lb./mmBtu & NO_x - 0.15 lb./mmBtu

ESSO LNS-CAP Facility, Cold Lake, Alberta, Canada

CCS-Stoker® Project

Objective:

- Reduce operating cost by half (switch to low-cost high-sulfur Illinois coal – 2.5 lb. SO₂/mmBtu) - Construction Permit w/ waiver NSPS, PSD; no NSR
- Emissions Warrantee: <0.9 lb. SO₂/mmBtu, <0.25 lb. NO_x /mmBtu
- **Project Initiated**: Oct 2005, **Commissioning**: Jan 2007
- - **<u>CEC Scope</u>** : Process Design & Engineering; Supply all equipment, hardware, electrical, instrumentation / controls
 - Provide Commercial Warrantee & License
- **<u>Client Scope</u>**: Site Construction Management;
 - Equipment Installation, as directed by CLPRC
 - Commissioning & Start-up
- **Project Support:** In part, by the Illinois Department of Commerce and Economic Opportunity through the Illinois Clean Coal Institute and the Office of Coal Development.

Coal-Fired Stoker Boiler (typical)

CCS Retrofit Modifications

Remove:

Stoker Feeders, Ash Hopper, Brick over stoker grate Control Panel

New Equipment:

CCS Burner, Gasification Chamber, Combustion Air Heater Boiler Instruments, Coal Mill, Bag house, FD fan, BM & Combustion Sys, HMI & PLC Controls New MCC

Operators (one/shift):

Was all manual operation; Now with HMI - from cold start to automatic full load operation in 5 hrs.

CCS-Stoker® Retrofit 30 MW (Thermal) - 125 mmBtu/hr – 5 T/hr Coal

© Copyright 2013 _

CCS-Stoker[®] Gasification Chamber

CCS-Stoker[®] Gasification Chamber Installation

- McBurney Corp designed and supplied the GC
- Connected to the boiler drums for natural circulation water cooling
- Shop fabricated membrane wall studded and refractory lined.

Stoker Boiler Furnace Deposits Typical Examples

Operation Observations CCS-Stoker[®] Furnace Ash Deposits

CCS-Stoker[®] Operation @ MCR Steam Overboard

© Copyright 2013 ____

CCS-Stoker[®] Retrofit Performance Preliminary Results – Full Load Operation

ltem	Stoker Base Line Test	Preliminary CCS Performance	% Change from Base Line
SO ₂ Stack Emissions (Ib/MMBtu)	1.80	0.72	- 67.0 %
NOx Stack Emissions (lb/MMBtu)	0.50	0.14 (88 ppm)	- 72.0 %
Boiler Efficiency	77.0	86.9	+ 12.8 %
CO ₂ Emissions - Ton/yr GW credits (% Reduction)	94,019	73,720	20,300T/y (- 21.6 %)
Project Cost Recovery (from firing lower cost coal)		~ 3 years	

CCS Features

Improved Operability, Availability & Reliability

- All equipment off-the-shelf & familiar to the operators
 - Safe, stable burner operation,
 - Same startup, shutdown and turndown as the PC plant
- Bottom Ash (slag) removed before furnace
 - low particulate/ash load; clean furnace, less soot blowing
- Sulfur removed from furnace gases near-zero SO₃:
 - Allows for lower furnace exit temperatures
 - Minimize water-wall wastage & corrosion,
 - Can use hot boiler exhaust for pulverizer sweep air:

 - Dry the coal reject moisture
 Improves coal pulverizer safety from fire & puffs (low O₂)
- Improved Boiler Efficiency (2 to +10%)
 - Reduce CO₂ emissions
 - High combustion efficiency (LOI < 1%)
- Limestone is only "chemical" required
- No waste water for disposal

CCS Summary (Key Strategic Issues)

- From Fundamental Combustion Theory to Commercial Operation
- Fire lower cost coals reduce plant operating cost
- Meets EPA's new stringent regulations for SO₂ & NO_x
- Allow power plant upgrade with waiver of NSPS & PSD No NSR
- Low Retrofit Cost; maintains older, smaller plants competitive
- Improve plants capacity factor & dispatch
- Fits within plant & boiler site footprint
- Ash products have value (sell bottom ash & fly ash)
- No hazardous or toxic chemicals required

It's ADVANCED COAL GASIFICATION TECHNOLOGY!

Strategic Business Opportunity? Acquire Abandoned Coal-fired Power Plants

- Re engineer and Update PC Electric Generation Plant with CCS;
 - Provides SO₂ & NO_x emissions control,
 - Waiver of NSPS, PSD, & no NSR
- Integrate a CBM on each coal Mill
- Improved power plant performance
 - improves boiler heat rate/efficiency less fuel fired
- Very competitive dispatch;
 - "**paid for**" fuel = low cost electricity
- Meet EPA "CAMR" goals (+90% mercury reduction)
- Can show carbon neutral process = No CO₂ increase!

CastleLight Energy Corp. Re Engineering Programs

Please Contact CastleLight Energy Corp.

Keith Moore - President

Phone: 805-551-0983 E-mail: keith@castle-light.com

See Web Site: <u>www.Castle-Light.com</u>

For Technical Presentations / Plant Surveys and Reports:

- "Re-Engineering Coal-Fired Power Plants for Low Emissions and Competitive Electricity Dispatch"
- "Operating Experience of a Coal-Fired Boiler Retrofit with an Advanced Hybrid of Coal Gasification For SO₂ & NO_x Emissions Control and Reduced Operating Cost"
- Proposal: "Re-Engineering Coal-Fired Power Plants with the Clean Combustion System"