

Mercury oxidation across SCR catalyst

RESEARCH | TECHNOLOGY | CATALYSTS

Karin Madsen (<u>kama@topsoe.dk</u>) on April 14th 2011 At McIlvaine Company Hot Topic Hour

13. april 2011

Introduction

- Kinetic study of mercury oxidation across SCR catalyst
- Predictions on mercury oxidation across SCR reactors in full-scale

Hg⁰ oxidation and the SCR

- Mercury is oxidized by halogens in the flue gas
 Hg⁰ + 2 HCl + 1/2 O₂ = HgCl₂ + H₂O
- SCR reactors enhance the mercury oxidation in flue gases:

Catalyst activity increases down through the layers of the SCR reactor

=> DeNOx and mercury oxidation are competing reactions on the catalyst surface

Surplus active sites

Kinetic study of Hg⁰ oxidation

Laboratory setup for testing commercial SCR catalyst:

- 1-4 monolithic channels of catalyst of length L=4-50 cm
- Gas matrix:

Hg⁰, HCl, O₂, H₂O, N₂, SO₂, NO, NO₂ and NH₃

■ T=250-450°C (480-840°F)

The kinetic regimes: Mass transfer and reaction

- Mass transfer
 - 'External diffusion' of reactants from the bulk gas to the catalyst surface
 - 'Internal diffusion' of reactants in the catalyst pores to the internal surfaces
- Reaction
 - On the external and internal surface of the catalyst material

Study of the external diffusion

 Measurement of Hg⁰-oxidation in favourable gas matrix (high HCl, no DeNOx, low H₂O)

Example set of data:

Study of the catalyst activity: Surface reaction and pore diffusion

- The catalyst activity for Hg⁰-oxidation is measured at a kinetic regime where external mass transport is not limiting
 - At high linear velocity (v=11 Nm/s) and low hydraulic diameter (Dh)

Study of the observed catalyst activity at industrially relevant conditions

Conclusions from laboratory study

- External diffusion resistance is the major limiting factor governing Hg⁰ oxidation in high dust SCR's at typical operating conditions
 - Properties such as formulation (e.g. V₂O₅ content) and porosity of existing SCR catalysts provide a very high surface activity for Hg⁰ oxidation
 - The geometry of the catalyst and linear velocity determine mass transfer to the catalyst surface and thereby observed activity for Hg⁰ oxidation

Hg⁰ oxidation in full-scale

- The fraction oxidized mercury at the SCR inlet varies from dayto-day (15-95%) due to influence from e.g.
 - Unburned carbon and calcium in the fly ash, presence of acid gasses and time - temperature history.
- SCR performance can be described by the conversion of Hg⁰ (X) (and is independent of inlet speciation):

$$X = \frac{\Delta Hg^0}{Hg^0(in)}$$

= >The total oxidized mercury leaving the SCR is a function of both inlet speciation and SCR performance!

Predictions for Hg⁰ oxidation across the SCR in full-scale

Conclusions on fate of Hg in full-scale

- Up to 90% Hg²⁺ is achievable in full-scale at the SCR outlet depending on the inlet Hg speciation and the chlorine concentration
- > 91% mercury removal is achievable using existing control devices, but requires the combination of the SCR-FGD strategy with a particulate control device, e.g:

