

UCC Dry Sorbent Injection
Multi-Pollutant Removal with DSI
Jon Norman, P.E.

Need for Simultaneous SO_{2,} SO_{3,} Hg, HCl Removal

MATS

- Hg limit of 1.2 lb/TBTU
- HCL limit of 0.002 lb/MMBTU for most units
- Both readily attainable with DSI

SO₂ Removal

- MATS Alternative Limit
- CAIR/Future CSAPR?
- BART
- State Rules
- Consent Orders, etc.

SO₂ and HCl Removal – Sorbent Choice

Trona

- Use when:
 - Moderate SO₂ removal needed (approx. 80% or less)
 - Need very high HCl removal

Sodium Bicarbonate

- Use when:
 - High SO2 removals needed (> 80%)
 - Want to minimize loading to ESP and/or ash removal systems
 - Want to inject at air heater outlet on PRB units to allow PAC injection air heater inlet

Hydrated Lime

- Use when:
 - Only require HCl Removal or only need low SO2 removal
 - Want to preserve ash sales
 - Possibly to avoid NO₂ plume (when have fabric filter)

Hg Removal – Sorbent Choice

PAC

- Use for:
 - High Cl E. Bituminous coals
 - Use in combination with CaBr2 fuel additive for PRB

Non-Carbon/Low Carbon Sorbents

- Use when:
 - Want to retain ash sales
 - ESP cannot accommodate carbon

Brominated PAC

- Use for:
 - PRB coals
 - Want to inject alkali sorbent at air heater inlet and therefore can't use fuel additive

SO₂ and HCl Removal – Injection Locations

Trona

- Economizer Inlet
 - If $< 1000^{\circ}$ F
- AH Inlet
 - Often the best choice
- AH Outlet
 - Performance decreases
 below 250° F

Hydrated Lime

- Effective at both Air Heater inlet and outlet
- Generally use less at Air Heater
 Outlet for HCl removal

Sodium Bicarbonate

- AH Inlet
 - If < 660° F
- AH Outlet
 - Performance decreases below
 250° F

Hg Removal – Injection Locations

Air Heater Inlet

 Generally has shown better performance for PRB coals than air heater outlet since
 Hg is removed in air heater

Air Heater Outlet

Typically used for E.
 Bituminous coals when alkali sorbents are used at air heater inlet to remove SO₃

SO₂, Hg, HCl Removal Results from DSI Demonstration Tests

SO₂, Hg, HCl Removal Results from DSI Demonstration Tests

Typical Multipollutant Removal for PRB Unit - ESP

HCl Removal

Typical Multipollutant Removal for PRB Unit Fabric Filter

Typical Multipollutant Removal for PRB Unit - ESP

Typical Multipollutant Removal for PRB Unit - ESP

Mercury Removal on E. Bituminous Unit

Hg Removal Percent BPAC Injection

SO₃ Removal

Hydrated Lime with ESP

SO₃ Removal

Unmilled Trona vs. Milled Trona

SO₂, Hg, HCl Removal with DSI

CONCLUSIONS

Conclusions for E. Bituminous Fuels

- Trona and sodium bicarbonate demonstrated as effective sorbents for SO₂ and HCl removal
- Hydrated lime effective for HCl removal, but less so for SO₂ removal
- Simultaneous high Hg removals for E. Bituminous coals usually requires SO₃ Removal
 - PAC or Brominated PAC typically used at AH outlet, with hydrated lime or trona at AH inlet for SO₃ removal
- Over 90% SO₂ removal, up to 99% HCl removal, and over 90%
 Hg removal

Conclusions for PRB Fuels

- Fuel additive and PAC upstream of AH performs the best, but any trona/SBC injection must be at AH outlet
 - Otherwise, trona/SBC will react with halogen from fuel additive
- Brominated PAC at AH inlet with trona/SBC at AH outlet performs very well
 - Trona/SBC at AH inlet would remove HCl/SO₂ needed to oxidize Hg in AH
- Trona/SBC at AH inlet with Brominated PAC injection at AH outlet is effective, but more Brominated PAC needed
 - May be due to NO₂ formation and/or HCl removal upstream of BPAC

Questions

Questions?

For Further Information on Dry Sorbent Injection Systems for SO₂, SO₃, Hg and HCl Reduction

Contact: Jon Norman 315.440.3244

www.unitedconveyor.com

