

EPER ELECTRIC POWER RESEARCH INSTITUTE

CO₂ Capture and Storage for Coal-Based Power Generation

John Wheeldon (jowheeld@epri.com) Technical Executive for Advanced Coal Generation

McIlvanie Hot Topic Hour March 31st 2011

The Challenge for Coal-Based Generation

60% of world's CO₂ emissions do NOT come from coal

RESEARCH INSTITUTE

- Coal-based power has met many previous challenges and environmental controls can reduce SO_X, NO_X, mercury and particulate matter down to very low levels at acceptable cost
 - These technologies evolved over more than 40 years.
- Reducing CO₂ poses an extreme challenge: CO₂ released from low-sulfur bituminous coal is ~120 times more than SO₂
 - Development to be in less than 40 years: no more than 10 to 15 years.
- The EPRI-MERGE analysis identifies the economically optimum technology portfolio to lower U.S. CO₂ emissions to ~ 1905 level
 - In 2050 coal without CCS: cost of electricity 210% higher than in 2007
 - In 2050 coal with CCS: cost of electricity 80% higher than in 2007 assuming CCS widely deployed starting ~ 2025
 - Similar values determined by International Energy Agency.
- Eventually gas-fired units will require CCS: it's a fossil fuel too!

330 GW of coal capacity in USA: replacing 1 GW/month takes 28 years

Re-Inventing and Demonstrating Coal-Fired Power Plant Technology

cO₂ Reduction, %

- Dual development approach
 - More cost-effective CO₂
 capture and storage (CCS)
 technologies
 - Raise steam towards 1400 F to increase generating efficiency and reduce CO₂/MWh: less CO₂ to capture, transport, and store.

Time

- EPRI analysis indicates that US will not require significant amounts of new coal-fired generation until ~2025
 - The interim period allows for technologies to be demonstrated and be commercially available by that time.

Performance Summary of Four PC Designs

RESEARCH INSTITUTE

CO₂ emissions per MWh from 1300°F A-USC unit are 16.2% lower than emissions from subcritical unit

	Subcritical	Supercritical	1100 USC	1300 A-USC
Main stream, °F/psia	1005/2600	1080/3800	1120/4000	1290/5100
Net efficiency, % HHV	36.5	38.5	39.2	43.4
Net heat rate, Btu/kWh HHV	9370	8880	8720	7880
Coal flow lb/hr (PRB coal))	840,600	797,000	782,700	707,000
Flue gas, ACFM	2,107,000	2,016,000	1,982,000	1,7901,000
Make-up water, gpm	4,260	3,750	3,650	3,300
NO _X & SO ₂ , lb/MWh	0.280	0.266	0.261	0.236
CO ₂ , lb/MWh from plant	1980	1880	1840	1660
CO ₂ , Ib/MWh from mining and transportation (*)	146	139	136	123

(*) Values based on life-cycle assessment model prepared by Carnegie Mellon University

Long-range option: using CO₂ as the working fluid can raise 1300 A-USC efficiency to 46.4 percent, lowering CO₂ emissions/MWh by 27.1%

When CO₂ Capture Included, Higher Generating Efficiency Lowers Levelized Cost-of-Electricity

Dual Technical Approach for Cost Reduction: Evolution

Breakdown of Energy Losses from PCC Study for 750-MW 1100 F USC PC Plant

	MW	% of total loss	
CO ₂ compression	67	45	
Turbine output reduction	55	37	
PCC aux power (1)	17	11	
Absorber cooling	10	7	
TOTAL	149	100	

(1) Fans, pumps, SO₂ polishing

- Compression to 2200 psia consumes most energy but most effort concentrates on lowering heat of regeneration to lower steam extraction and increase power generation.
- Most solvents can regenerate at pressure but increased CO₂ partial pressure requires higher regeneration temperature
 - Offsets reduction in compression duty: degrades amine solvents.

Dual Technical Approach for Cost Reduction: Revolution

Some Novel Approaches Funded by Various DOE Programs

- Ionic liquids: a solid in liquid phase with multiple possible formulae
 - Amines dissolved in ionic liquid not water.
- Solvents that absorb CO₂ and form an immiscible liquid phase or a solid that is readily separated from mixture.
- Use of enzymes to accelerate kinetics for solvents with low CO₂ reaction rates but with low heats of reaction.
- Freezing CO₂ from flue gas
 - Pass flue gas through nozzle at supersonic speeds.
- Improved adsorbents and metal oxide frameworks that can be formulated with high specific surface: still need heat to release CO₂.
- Membranes to separate CO₂ from flue gas without need for regeneration energy: no reduction in compression energy.

www.netl.doe.gov

http://arpa-e.energy.gov/

www.nationalcarboncapturecenter.com

Coal Plants Dispatch Ahead of NGCC Plants with or without CCS

	Capacity factor, %	LCOE, \$/MWh		Dispatch cost, \$/MWh	
			+ CO ₂ adder (3)		+ CO ₂ adder (3)
1290F A-USC PC (1)	85	55.1	75.9	17.2	41.0
2 x 7FB NGCC (1)	85	51.0	61.6	38.3	48.9
2 x 7FB NGCC	40 (2)	69.2	80.9	42.1	53.8
With 90% PCC					
1290F A-USC PC	85	86.5	89.3	21.5	24.4
2 x 7FB NGCC	85	68.5	69.8	46.7	47.9
2 x 7FB NGCC	40	97.6	99.0	51.2	52.5

(1) Coal \$1.80 MBtu, gas \$5.00/MBtu

(2) Average CF in 2009 (3

(3) \$25/ton CO₂

- Lower dispatch cost for coal results in low capacity factors for NGCC
 - COE for NGCC at actual capacity factor higher than that of coal plant
 - This is part of why coal with CCS is essential in keeping electricity affordable.

Concluding Remarks

- EPRI's MERGE analysis determines the mix of power generation technologies required for the USA to lower its CO₂ emissions to ~1905 levels by 2050.
- Coal-based generation with CCS can play a major role provided that the technology is commercially available in the next 10 to 15 years.
- The US-DOE is investing in the development of novel technologies and providing support to advance them to demonstration prior to their commercial operation.
- It is a worldwide challenge that will require international cooperation
 - We are all part of the solution.

Together...Shaping the Future of Electricity

© 2011 Electric Power Research Institute, Inc. All rights reserved.