March 15, 2012

John Darrow Jeff Kolde

W.L. Gore and Associates, Inc

- Founded in 1958
- Inventors of ePTFE membrane
- Privately-held / Associate-owned
- Over 8,500 Associates
- Sales of over \$3 Billion in fiscal year 2010
- Ranked in the U.S. and Europe by Fortune Magazine as one of the top 100 companies to work for
- Enterprise committed to innovation

Worldwide

Worldwide Locations

Creative Technologies Worldwide

Manufacturing in U.S., Germany, Scotland, Japan, and China 45 plants and sales locations globally

W.L. Gore and Associates Inc.

Existing Strategies for Mercury Control

- 1. Remove in liquid phase in wet FGD scrubber
 - Relies on conversion of mercury to oxidized form upstream of scrubber
 - Sensitive to coal type
 - Additives can cause corrosion
 - Waste water treatment
 - Hg Re-emissions
- 2. Remove mercury from gas phase using sorbents
 - Activated Carbon Injection (ACI) is most common
 - Handling and disposal issues
 - Contamination of fly ash
 - Complicates PM compliance
 - Sensitive to coal type (SO₃, halogen content)

Fixed Bed Sorbent Technology

- Because of the drawbacks associated with these approaches, fixed-bed technologies have been pursued
- Compared to ACI, fixed beds have inherent advantages:
 - Simple passive operation
 - No contamination of fly ash
 - Minimal solid waste generation
- However, due to saturation by SOx and other acid gases, fixed sorbent beds typically require frequent regeneration:
 - Energy-intensive, complicated regeneration processes
 - Adds significant cost (capital and operating)

Material Innovation by Gore

- Sorbent Polymer Composite (SPC) material
 - Efficiently captures both elemental and oxidized mercury Hg
 - High capacity for mercury storage
 - Does not require regeneration
- Unique physical-chemical nature of the SPC material
 - Acid gases are converted into aqueous solution and expelled to SPC material's outer surfaces
- SO₂ reduction is a co-benefit of this technology

Installation without wFGD Scrubber

GORE[®] Mercury Control Modules operate best in the temperature range of 125-225°F (50-100°C)

- Captures Elemental and Oxidized Mercury
- Low Operating Cost
- Self-Contained Sorbent
- Modular Compliance Solution

- Avoids need for upstream additives
 - Cost, complexity, corrosion concerns
 - Insensitive to raw material composition changes that impact mercury species
- Resolves FGD mercury re-emissions concerns
 - Simplifies FGD operation
- Doesn't rely on SCR catalyst health

- Captures Elemental and Oxidized Mercury
- Low Operating Cost²
- Self-Contained Sorbent
- Modular Compliance
 Solution

- Long Module Lifetime
 - Modules have very high capacity for mercury storage
- Simple Operation
 - No adjustments needed to account for changes in mercury concentration or speciation
 - Little to no maintenance or energy required to operate
 - No regeneration

- Captures Elemental and Oxidized Mercury
- Low Operating Cost
- Self-Contained
 Sorbent
- Modular Compliance
 Solution

Unlike Activated Carbon Injection:

- No contamination of fly ash
- No impact to particulate collection devices
- Minimal waste generation
- Simplified logistics
 - Avoids need for continuous transport, safe storage, disposal of PAC
- Allows fuel flexibility
 - Insensitive to flue gas composition changes (SO₃, halogen content, VOCs, Hg species)

- Captures Elemental
 and Oxidized Mercury
- Low Operating Cost
- Self-Contained Sorbent
- Modular Compliance Solution

- Mercury reduction determined by number of modules
 - Compliance assured by design
- Flexibility to meet future regulations / process changes
 - Additional layer of modules for higher mercury capture represents minimal investment
- Co-benefit of SO₂ reduction
 - Typically >50% SO₂ converted to H₂SO₄

Plant Yates Demonstration (2010)

Gore, EPRI, URS, and Southern Company

We are here

Average Removal Efficiency During 65 Day Test

Worldwide

Gore, EPRI, URS, and Southern Company

Passive Solution for Variable Inlet Concentrations

Significant changes in mercury inlet concentrations do not require any adjustments or changes to the modules

Lifetime Projections

Measured Hg-removal efficiency of SPC material with different amounts of captured Hg

Efficiency for Hg capture remains steady beyond 6 wt% Hg on SPC

Economic Analysis

- Performed by URS (Austin, Texas)
- ~600 MW unit
 - Wet FGD Scrubber, ESP, no SCR, lignite coal
 - ~70% Hg reduction needed
 - Ash sales practiced
- Four options considered
 - 1) ACI (5 lb/MMacf)
 - 2) Bromide additives (200ppm)
 - 3) ACI + Bromide additives (1 lb/MMacf + 50 ppm)
 - 4) Gore® Mercury Control System installed in scrubber
 - 3-year and 6-year module lifetime modeled

Economic Analysis

Economic Analysis

Summary

- Gore has a new approach to mercury control
 - Simple, robust, low-maintenance solution
 - Low cost (capital and operating)
 - SOx reduction co-benefit
- Field testing has demonstrated high efficiency and long lifetime
 - Additional post-scrubber and in-scrubber pilot tests starting this year
- Full scale installations proposed for next year
 - Seeking additional early adopter sites

