CO₂ reduction through Energy Efficiency in Coal Fired Boilers

Jim Sutton

March 30, 2011

Today's Coal Power Plant Market Reality

- Drive to zero emissions for coal power plants
 - Water
 - Gas
 - Combustion Residues
- Older, less efficient coal fired
 units shut down
- Surviving units struggle to
 - Optimize position on the dispatch curve
 - Keep pace with regulatory changes on water, air, and Combustion residues
 - Minimize impact of potential Carbon taxes or efficiency legislation

US Boiler CO₂ production intrinsically related to coal mining

1 Ton of Coal = 3.7 Tons of CO2

Wt Ratio = (12+32)/12 = 3.7

US Coal Plants 2008 CO2 Data Weighting typical ultimate values

Coal Source	Fixed Carbon (%)	Higher Heating Value (Btu/lb)	Coal Fired in Utility Boilers (Million Tons)	Carbon Fired (Million Tons)	CO2 produced (Million Tons)	Heat Produced (Million Btu's)
Western	47%	8000	565.5	263.0	964.2	9.0E+09
Appalachian	77%	13650	347.9	266.5	977.0	9.5E+09
Interior	62%	11200	130.2	80.2	294.1	2.9E+09
Total			1043.6	609.6	2235.3	2.1E+10

Source: US EIA and Alstom Fuel databases.

CO2 in top table from fuell analysis CO2 in lower table from eia

US Coal Power Plants Installed Base (GW) vs Age (years)

Age (years)

Coal Power Plant Installed GW and Capacity Factor vs Heat Rate

Heat Rate (Btu/kwh)

Heat Rate Capability

EUEC Conference 2010 Sutton - P 8

National Energy Technology Laboratory (NETL) Efficiency Analysis

- "The analysis of U.S. fleet of coal-fired power plants shows a wide variation in efficiency levels but the basic message is that these levels have been largely stagnant for decades and that there is "headroom" for efficiency improvements among all plants including those that currently operate at below average, average, and above average efficiency levels. "
- Claim 10% improvement potential

Opportunities to Improve the Efficiency of Existing Coal-fired Power Plants

WORKSHOP REPORT

July 15-16, 2009

Hyatt Regency O'Hare Rosemont, Illinois

Sponsored by:

National Energy Technology Laboratory

Prepared by:

Jack Eisenhauer Richard Scheer

THENERGENCS

EUEC Conference 2010 Sutton - P 9

Market Challenges and Potential Issues

- Making changes in plants to improve efficiency is hampered by the New Source Review provisions of the Clean Air Act, which can trigger potentially lengthy and costly regulatory proceedings when capital improvements and other changes in the plant are made.
- The lack of economic incentives to address efficiency improvements due to the presence of fuel adjustment clauses in approved electricity rates that enable power companies to "pass-through" changes in fuel costs directly to customers.
- Concerns about regulatory proceedings, combined with the lack of economic incentives, make it difficult to get management commitment for power plant efficiency programs that must compete for scarce corporate capital and labor resources. At the same time, the primary aim for power plant operators is to optimize the profitability of the units and ensure they are available to serve load

EUEC Conference 2010 Sutton - P 10

Case Study: 760 MW Midwest Coal Boiler Analysis of Energy losses

EUEC Conference 2010 Sutton - P 11

Case Study: 8 Units (1000MWE) low sulfur fuel conversion – Power Savings from ESP Transformers

After SIR Upgrade, Before EPOQ

Unit 4					
T/R	Size (kV/mA)	kV avg	mA avg	kW	
4A1	70/800	56	579	32	
4B1	70/800	57	594	34	
4A2	70/800	51	743	38	
4B2	70/800	51	734	37	
4A3	60/1000	52	638	33	
4B3	60/1000	51	793	40	
4A4	60/1000	54	756	41	
4B4	60/1000	50	828	41	
Unit 4 Boiler Load		96.9 MW			
Total Plant Capacity		1,028 MW		296 kW	
Stack Opacity		13%		Total	
Unit 4	Coal SO ₂ Content	1.5 lb SO ₂ /MBtu			

After SIR Upgrade, With EPOQ

		Unit 4				
	T/R	T/R Size (kV/mA)		mA avg	kW	
	4A1	70/800	51	238	12	
	4B1	70/800	51	225	11	
	4A2	4A2 70/800		294	12	
	4B2	70/800	39	250	10	
	4A3	60/1000	45	505	23	
	4B3	60/1000	44	482	21	
	4A4	60/1000	46	511	24	
	4B4	60/1000	38	274	10	
	Unit 4 Boiler Load		103 MW			
Total Plant C		Plant Capacity	1,030 MW		124 kW	
	Sta	ack Opacity	13.5%		lotal	
Unit 4 Coal SO ₂ Content		1.0 lb S				

EUEC Conference 2010 Sutton - P 12

Case Study: 2 x 500 MW Boiler Combustion Optimization Tuning

ALST<mark>O</mark>M

- Reduce overall excess air levels with optimum adjustment of air introduction (7% reduction)
- Decrease cold air to Pulverizers (5% reduction)
- Increase Pulverized Coal Fineness (Before – 69% thru 200, After – 78% thru 200 mesh)
- Eliminate Leaks in Ductwork and Casing
- Alstom believes that optimizing existing equipment lowers CO₂ production by up to 0.5%

- US electric power production from coal results in more than 2,100 million Short Tons on CO₂
- Improvements in coal power plant efficiency result in a decrease in CO₂ emissions and improved power plant economics
- A 5% reduction in CO2 / KW-hr produced appears to be feasible
- Case studies showing results for both larger projects and smaller efficiency improvements confirm the concept.

Jim Sutton Director, Boiler Service Products 860 285 4750 jim.sutton@power.alstom.com

Doug Kerr

Director, Asset Optimization

631 420 3251

doug.kerr@us.sigenergy.com