Particulate and Condensable Removal with a Membrane

McIlvaine Co. Hot Topic Hour April 26, 2013

- •Technical expertise
 - •Proven 30 years ePTFE manufacturing experience

•Superior customer service

•Committed to satisfying customer needs

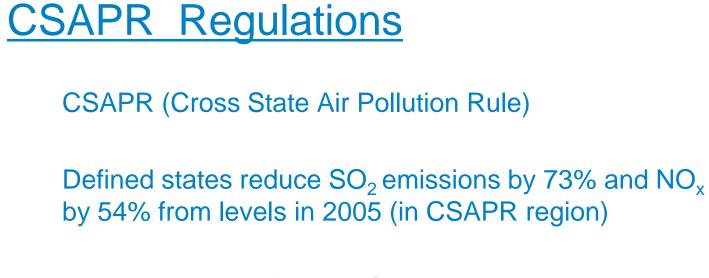
•Global presence

•Worldwide sales and manufacturing capabilities

•Local support

•Offices around the world

By definition – They are vapors that pass through the bag house then at some point transition to the solid phase – PM


Problem: Condensables can be 3x – 4x PM

CSAPR

Unknown when effective; Court of Appeals temporary stay-hearing in June 2012

LB/MWh	Filterable Particulate		Acid Gasses (Hydrogen Chloride)		Mercury	
	Existing	New	Existing	New	Existing	New
Not Low Rank Virgin Coal	0.3	0.007	0.02	0.0004	0.013	0.0002
253						
Low Rank Virgin Coal	0.3	0.007	0.02	0.0004	0.04	0.04
		* Lb/MWHR		*/10 MMBTU		

Perspective

Reduced By: PM = 97.7% Acid Gas = 98.0% Mercury = 98.5 %

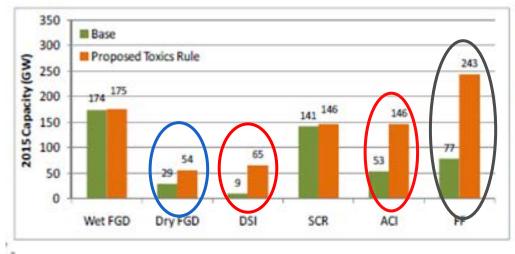
<u>Coal</u>

Not Low Ranked Virgin Coal

Anthracite or anthracitic -

- Bituminous coal -
- Sub bituminous -

Low Ranked Virgin Coal


Lignite A Lignite B >86 % fixed carbon <14 % volatile
<86 % fixed carbon >14 % volatile
>8300 <11500 BTU</pre>

>6300 < 8300 BTU <6300 BTU

Planning Model

Retrofit pollution control installations on coal-fired capacity (by technology) with the base case and with the proposed Toxics Rule, 2015 (measured in GW capacity). Source: Integrated Planning Model run by EPA, 2011

FGD: flu gas desulfurization (scrubber) DSI: dry sorbent injection SCR: selective catalytic reduction ACI: activated carbon injection FF: fabric filter

BENEFITS OF MEMBRANE

Sorbent/Activated Carbon Injection

Increases Filter Bag Inlet Grain Loading

Lime/MilledLime/Hydrated Lime

Sodium/Milled Sodium/Trona

2-45 microns PSD range

7-30 microns PSD range

PAC Injection:

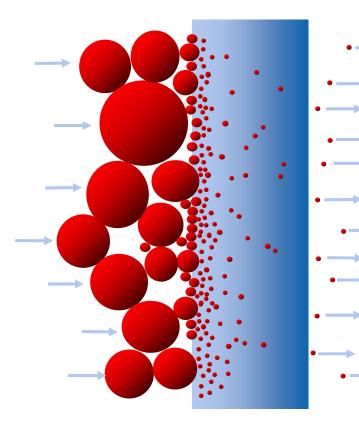
90-99% minus 325 mesh

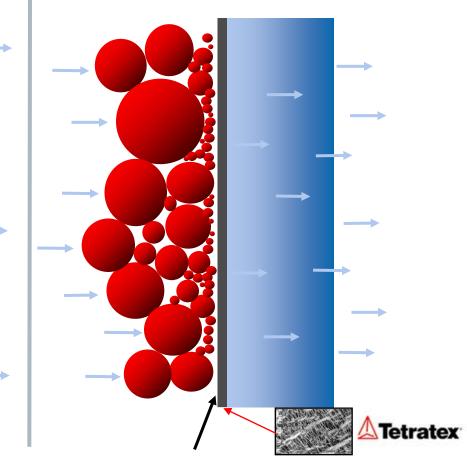
5-20 microns PSD range

ePTFE Membrane

ePTFE = Expanded Polytetraflouroethylene

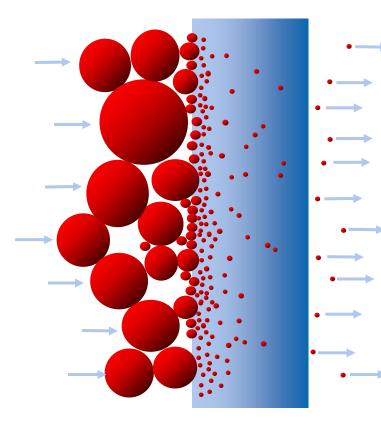
- Membrane: Porous film made from PTFE
- Manufactured from 100% PTFE Polymer resin
- Thermally bonded onto a range of substrates
- A surface filtration membrane
- Acts as a primary dust cake*
- No pre-coat required *
- Inhibits fine particulate penetration
- Helps to preserve integrity of the substrate
- Helps to optimize filter performance



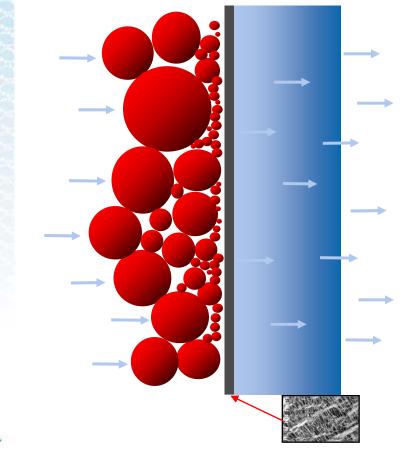


* Precoat for fuel oil at start-up.

Fetratex

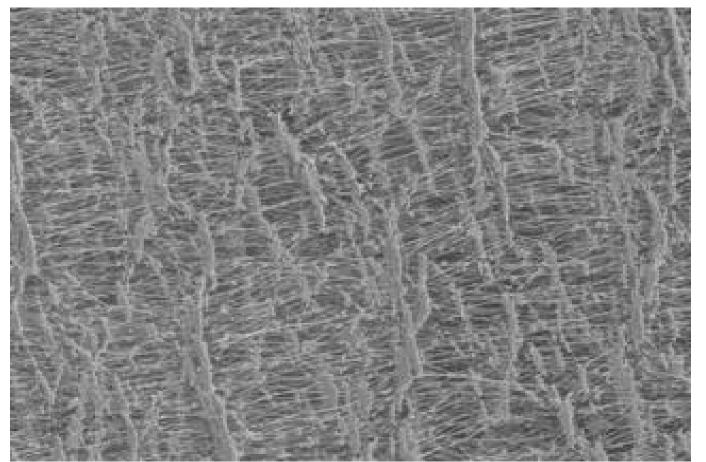

Depth Filtration - Surface Filtration

Depth Filtration



- Efficiency relies on cake formation
- Dust cake restricts airflow
- Requires high cleaning energy which imparts mechanical stresses
- Fine particles migrate into media causing abrasion damage
- Leads to blinding High pressure drop

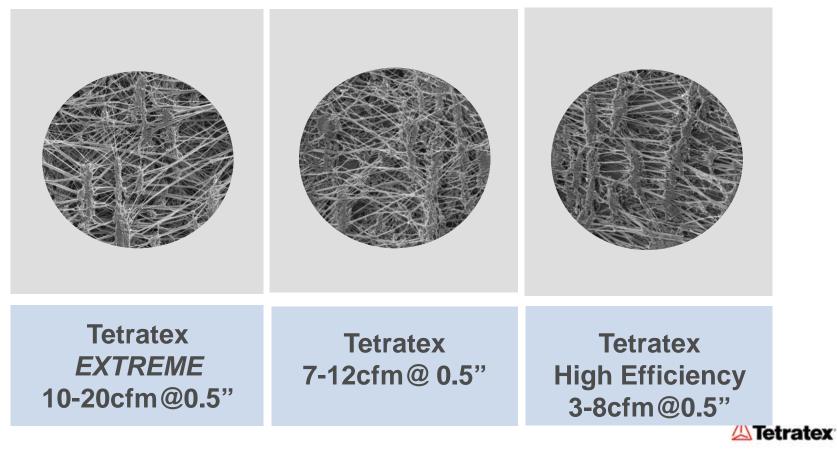
Surface Filtration - Tetratex[®]



- Acts as primary dust cake, no pre-coat required*
- Inhibits particle migration
- Low cake formation allows for reduced cleaning therefore less mechanical stresses
- Higher cleaning efficiency gives higher constant airflow
- Excellent cake release Low pressure drop

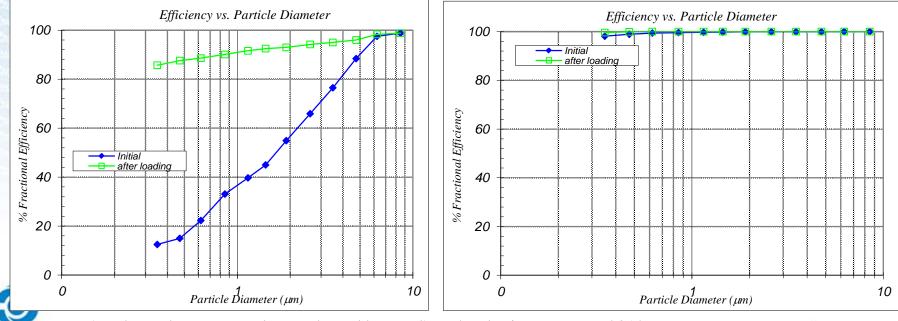
* Precoat for fuel oil at start-up.

Membrane at 500x



Donaldson

ATetratex



Microscopic View of Utility ePTFE Membranes

Efficiency Comparison: 16oz PPS

Conventional Media

Tetratex Laminate (8162)

* Independent test results conducted by LMS Technologies Inc. May 2012

Efficiency Comparison: 16oz PPS

Conventional Media

Status	Initial	after loading	
Size Range (mm)	% Efficiency		
DP ("H ₂ O)	0.185	0.385	
0.3-0.4	12.5	85.7	
0.4-0.55	15.0	87.6	
0.55-0.7	22.3	88.6	
0.7-1.0	33.1	90.1	
1.0-1.3	39.7	91.6	
1.3-1.6	45.0	92.5	
1.6-2.2	54.9	93.0	
2.2-3.0	65.9	94.2	
3.0-4.0	76.5	95.0	
4.0-5.5	88.4	96.0	
5.5-7.0	97.5	98.3	
7.0-10.0	98.8	98.8	

Tetratex Laminate (8162)

Status	Initial	after loading	
Size Range (mm)	% Efficiency		
DP ("H ₂ O)	0.756	0.956	
0.3-0.4	98.1	99.6	
0.4-0.55	98.9	99.9	
0.55-0.7	99.4	100.0	
0.7-1.0	99.6	100.0	
1.0-1.3	99.7	100.0	
1.3-1.6	99.8	100.0	
1.6-2.2	99.9	100.0	
2.2-3.0	99.9	100.0	
3.0-4.0	99.9	100.0	
4.0-5.5	99.9	100.0	
5.5-7.0	100.0	100.0	
7.0-10.0	100.0	100.0	

* Independent test results conducted by LMS Technologies Inc. May 2012

Observations and Concerns

- 1. Utility Bag Houses being built with Membrane bags
- 2. Is current instrumentation capable of measuring accurately and repeat ably to the new standard
- 3. CSPARR?
- Outlet particulate emissions leaving the system shall not exceed -- X mg/m³
- 5. The box the bag –fused seams stitched seam taped seams (vertical& horizontal) sewing on rings

Thank You

References:

Changes from the Proposed Rule – Utility MACThttp://www.dep.state.pa.us/dep/subject/advcoun/aqtac/2012/01-12-12/Utilty_MACT-Final_Rule-AQTAC_with_TAP_addition(3).pdf

GEOLOGICAL SURVEY CIRCULAR 891

U.S. Department of the Interior, U.S. Geological Survey URL: http://pubs.usgs.gov/circ/c891/guidelines.htm

EPA's Final Mercury and Air Toxics Standards and NSPS for Power Plants Air Quality Technical Advisory Committee Meeting January 12, 2011 Harrisburg, PA 17105

Technology Transfer Network Air Toxics Web Site http://www.epa.gov/ttn/atw/utility/utilitypg.html

NESHAP - http://www.epa.gov/compliance/monitoring/programs/caa/neshaps.html

