

Ivan A. Cooper, PE, BCEE

Power Plant Cooling Towers and Cooling Water Issues

McIlvaine Company Hot Topic Hour - 11 AM EST February 16, 2012

Water Management Issues at Power Plants

- Waste Heat Removed (once through or Cooling Towers w/recycle)
- 316(b) Phase II rules will affect 670 plants
 - 343 Fossil Plants & 42 Nuclear plants will install Cooling Towers
- New Air Rules Mercury Air Toxics (MATS) and Boiler MACT
 - Constituents to water phase?
- Steam Electric Power Generating Effluent Guidelines will impact
 - Nutrient Discharge rules
 - Affects cycles of concentration
 - salts, metals, toxics, trace contaminants
 - Impacts discharge quality
- Water for CT becoming scarce and more expensive
- SO...

Worldwide Trends

- 95 liters (25 gal) per KW produced average all types of generation
 - Steam for turbines, but most to cool steam
- Power is second largest US water user = 40% all freshwater withdrawals
- 43% US Power Plants use "once-through" cooling
- New plants use closed-cycle cooling typ. 4 8 cycles

Cooling Tower Sources

- Traditional (Allocation, Cost, Droughts)
 - Surface Water
 - Groundwater
- Untraditional (Quality, Location)
 - Surface Runoff Capture
 - Acid Mine Drainage
 - Ash Transport Water
 - Municipal/Industrial Wastewater Effluents
- University of Pittsburgh Study
 - 50% of all existing US Power Plants can obtain all cooling water from POTW within 10 mile radius!
 - 78% of all existing US power plants, if radius extended to 25 miles
 - 80% of proposed power plants within 10 miles

"Reuse of Treated Internal or External Wastewaters in the Cooling Systems of Coal-Based Thermoelectric Power Plants"

Cooling Tower Sources

- Reclaimed POTW Water Usage
 - 5400 US Power Plants
 - 60 use reclaimed water FL, CA, TX, AZ
 - Reclaimed water started 30+ years ago, but trend growing
- POTW usage concerns
 - Elevated nutrients
 - bacteria, fungi, algae
 - Forms slime coating on heat exchangers
 - Salts precipitate as scale
 - Phosphate and ammonia corrode metals
 - Emerging Concerns (typically ppb and ppt range) – Discharge, Return, Drift
 - Endocrine Disruptors (modifiers), PPCP, others

Cooling towers can use many sources of lower quality water with proper pretreatment design and chemical treatment

Figure 8: Cooling Tower Makeup Water Reuse Sources

Reuse Impediments

Transmission line routing

- ROW Issues Private, Highway, Rail lines
- Multiple Ownership
- Efficiency Loss from Pumping Long Distances
- Cost of Lines

Storage

- Closed v. Open Tanks
- Impoundments
- Polymer/Alum for TSS "burps" flocculation & settling
- Disinfection/residual

Where to discharge?

- Return line to POTW
- Surface Discharge
- ZLD evaporation/crystallization; Evaporation Ponds

Higher recycle rates concentrate salts, constituents

- TDS
- Metals
- Nitrogen/Nutrients to TMDL Limited waters

- Regulatory
 - discharge quality, maintain low flow in streams
 - Cross basin transfer issues with discharge?
 - If recycle municipal wastewater, concentrate other constituents with discharge back to POTW – increased fees for concentrated wastewater?
 - Cost of reclaim water supply?
 - Cost of discharge v. ZLD?
 - Drift Constituents
 - Air Toxics, 316(b),
 - Effluent Guidelines, Nutrients rules
 - Worker Safety Programs
 - Purple Pipe
 - Training
 - Immunizations

US Water Reuse Regulations/Guidelines

Reclaimed Municipal Wastewater can be used for Cooling Tower Makeup at Power Plants, but...

- Almost all states have adopted some regulations
- 34 states have detailed regulations
- 16 states have guidelines or design standard
- Reuse may be permitted on a case-by-case basis

Unrestricted US Urban Reuse Regulations

State	Date	Regulation – (Other Parameters in Regulations)
FL	Nov 2009	5 mg/I TSS; 20 mg/I CBOD5; C.T 300 ft setback, minimize drift
CA	Jan 2009	2.2 MPN/100 ml (7 day)
ТХ	Nov 2009	5 mg/l BOD; 3 NTU; 20 CFU/2100 ml
AZ	Jan 2001	<2NTU; 23/100 ml
CO	Nov 2007	126/100 ml (class 2 /class 3)
VA	Jan 2010	14/100 ml FC
WA	Dec 2010	2.2/100 ml; BOD,30 mg/l
OR	Jun 2009	Oxidized. Filtered, NTU, bacteria
NC	2008	14/100 ml FC; TSS 5 mg/l; BOD 10 mg/l
MA	2000	0/100 (median); no test over 14/100 ml FC

2008 Regulations

Why US EPA Guidelines Updated in 2004?

- Emerging pathogens
- Increasing pressure on water resources
- Emerging pollutants of concern
- PCPs Personal Care Products
- PhAC Pharmaceutical Active Compounds
- PPCPs Pharmaceuticals and Personal Care Products
- alkylphenol ethoxylates (APEOs) surfactants
- polycyclic aromatic hydrocarbons (PAHs)
- EDCs- Endocrine Disrupting Compounds/Chemicals

Management of Reclaimed Water CT

- Chemical control
 - Biofouling Control (slime control bacteria, fungi, algae)
 - Sodium hypochlorite
 - Monochlormine
 - Scale Control
 - Chemical
 - pH control and dispersants
 - Polymaleic acid
 - Tetra-potassium pyrophosphate
 - Corrosion Control (phosphate, ammonia)
 - Tolytriazole
 - Sodium bromide
- Physical
 - SS, Titanium, or plastic piping
 - high flow rates for scaling issues

Recirculated Cooling

- Treatment for cooling tower cycles of concentration
 - Filtration/backwash
 - Lime softening
 - Alum precipitation
 - Ion Exchange
 - Membranes
 - pH control
- Solids/sludge management

Blowdown

- Chemical
- MF/UF
- RO
- AOP
 - UV
 - H_20_2
 - O₃

Case Study Examples

Usage of Reclaimed Water	Number of Facilities
Cooling Tower makeup	46
Cooling Ponds	2
Air Scrubbers	2
Injected to Increase Pressure at Geothermal Fields	2
Boiler Feed Water	1
Cooling Tower Makeup and Scrubber Water	1

Case Study Examples – Panda Plant, MD

- 248 MW Combined Cycle 1997
- 1.5 mgd in 17 mile pipeline
- 8-10 cycles of concentration
- Mattawoman POTW
 - UV Disinfection
 - Panda adds sodium hypochlorite
 - POTW discharge limit 3 mg/l N

Reclaim Water Cooling Tower Recirculation pumps

Panda Plant Aerial View

South Florida

Miami Dade SW WWTP Effluent to Cool the Proposed FPL Turkey Point Nuclear Reactor Unit 7 – 75 MGD

- Citizens Groups challenged on many issues
- Florida Crocodiles
- Endocrine Disrupters, PPCP in Drift

El Segundo, CA

West Basin Recycling Facility Produces 5 types of Reclaimed Water (30 mgd)

- Tertiary Water (Title 22) for a variety of industrial and irrigation uses;
- Nitrified Water for industrial cooling towers;
- Softened Reverse Osmosis Water: Secondary treated wastewater purified by micro-filtration (MF), reverse osmosis (RO), and disinfection for groundwater recharge;
- Pure Reverse Osmosis Water for refinery low-pressure boiler feed water; and
- Ultra-Pure Reverse Osmosis Water for refinery high-pressure boiler feed water.

- Pharmaceuticals and Endocrine Disruptors
- Natural hormones human or animal
 - Natural chemicals –produced by plants –phyto-estrogens
 - Synthetic pharmaceuticals hormonally active such as the contraceptive pill
- Other man-made chemicals. Including:
 - cosmetics, medical compounds, pesticides, industrial chemicals
 - Alkylphenols; polycyclic aromatic hydrocarbons;
 - organohalogens; triorganotins

Surfactants and Pesticides

- Surfactants
 - Alkyl Phenol Ethoxylates (APEO) widely used in industries
 - Nonylphenol ethoxylate is the most common
 - APEOs tend to be degraded to more potent endocrine disrupting compounds during wastewater treatment
- Pesticides
 - Largest group of EDCs
 - DDT, dieldrin, 2,4-D, tributyltin, atrazine, metolachlor, cyanazine, alachlor
 - All herbicides, fungicides, pesticides
 - Atrazine the most difficult to remove
- Other Compounds
 - Polyaromatics, PCB, flame retardants, phthalates

Potency of Steroid Compounds

EDC	Lowest Observed Effective concentration (LOEC)-Rainbow Trout	WWTP Effluent Concentrations
Estradiol	1 ng/l	<0.2 – 3 ng/l
Ethinyl estradiol	0.1 ng/l	<0.2 – 3 ng/l
Nonylphenol	14,000 ng/l	<80 – 923 ng/l
Bisphenol A	25,000 ng/l	8 – 33 ng/l

German Study – Berlin Ruhlenben WWTP – Hansen st al, 1998)

Zora'a Vineyard (Kibbutz Tzora)

- Hebrew University studied health risks of drift from spray irrigation with reclaimed water
- no increased incidence of disease in reclaimed water-user & workers compared to other workers.

- 30 km creek system from Jerusalem, secondary, disinfected effluent
- Used since 1960s
- 40 ha vineyard growing sauvignon blanc and cabernet sauvignon for own small boutique winery. Potable water after budding
- The Kibbutz also has a 50 ha almond orchard, 200 ha of olives and a 900 cow dairy from which the off-run water is used directly for cotton growing.

Passive Treatment

Active Treatment

Passive Treatment - Constructed Wetlands

- Imitate the environment
- Aerobic, anoxic & anaerobic zones
- Effective at mercury removal to v. low levels (0.04-0.09 to <0.008 µg/L)
- Removes COD, BOD, ammonia
- Other ions
 - manganese boron selenium

Active Treatment Processes

- Wastewater treatment particularly higher SRTs (nitrification and BNR/ENR) can provide significant removals.
- Granular Activated Carbon
- Reverse Osmosis
- Advanced Oxidation Processes
 - UV
 - H202
 - O3

Treatment Efficiencies

EDC Classification	Coagulation/ Flocculation	Softening/ metal oxides	CL2/ CIO2	UV	Ozone/ AOPs	Activated Carbon	BAC	NF	RO
Pesticides	<20%	70-90%	70-90%	>90%	20-90%	>90%	90%	70-90%	>90%
Industrial Chemicals	<20-40&	<20-40%	<20%	>90%	40-90%	>90%	>90%	>90%	>90%
Steroids	<20%	<20-40%	>90%	>90%	>90%	>90%	>90%	70-90%	>90%
Metals	40-90%	40-90%	<20%	<20%	<20%	<20-40%	40-70%	70-90%	>90%
Inorganics	<20%	70-90%	<20%	40-90%	20-90%	70-90%	70-90%	70-90%	>90%
Organometalics	<20-40%	<20-40%	<20-70%	40-90%	20-90%	70-90%	70-90%	70-90%	>90%

Conclusions

- Coming "Perfect Storm" impacting Power Plants – more cooling towers!
- Reuse growing quickly
- Many different standards/concerns
 - Bacteria, TSS, turbidity, etc.
 - Virus
 - Endocrine Disruptors Estrogens
 - PPCP
 - Others
- Lots of Impediments to Overcome
- Good History Worldwide
- Public Perception
 - Don't Underestimate Public Opinion!

Advantages

- History of successful projects
- Reduces pollutant load in discharges
- Saves potable water
- Provides reliable supply
- May save energy

QUESTIONS??

Thank You ivan_cooper@golder.com

