Ivan A. Cooper, PE, BCEE

Power Plant Cooling Towers and Cooling Water Issues

McIlvaine Company Hot Topic Hour - 11 AM EST
February 16, 2012
Water Management Issues at Power Plants

- Waste Heat Removed (once through or Cooling Towers w/recycle)
- 316(b) Phase II rules will affect 670 plants
 - 343 Fossil Plants & 42 Nuclear plants will install Cooling Towers
- New Air Rules – Mercury Air Toxics (MATS) and Boiler MACT
 - Constituents to water phase?
- Steam Electric Power Generating Effluent Guidelines will impact
 - Nutrient Discharge rules
 - Affects cycles of concentration –
 - salts, metals, toxics, trace contaminants
 - Impacts discharge quality
- Water for CT becoming scarce and more expensive
- SO…
Worldwide Trends

- 2009 – 10 billion m³/yr
- 2014 – 29 billion m³/yr

Source: Global Water Intelligence
Cooling Water at Power Plants

- 95 liters (25 gal) per KW produced – average all types of generation
 - Steam for turbines, but most to cool steam
- Power is second largest US water user = 40% all freshwater withdrawals
- 43% US Power Plants use “once-through” cooling
- New plants use closed-cycle cooling – typ. 4 – 8 cycles
Cooling Tower Sources

- **Traditional (Allocation, Cost, Droughts)**
 - Surface Water
 - Groundwater

- **Untraditional (Quality, Location)**
 - Surface Runoff Capture
 - Acid Mine Drainage
 - Ash Transport Water
 - Municipal/Industrial Wastewater Effluents

- **University of Pittsburgh Study**
 - 50% of all existing US Power Plants can obtain all cooling water from POTW within 10 mile radius!
 - 78% of all existing US power plants, if radius extended to 25 miles
 - 80% of proposed power plants within 10 miles

“Reuse of Treated Internal or External Wastewaters in the Cooling Systems of Coal-Based Thermoelectric Power Plants”
Cooling Tower Sources

- **Reclaimed POTW Water Usage**
 - 5400 US Power Plants
 - 60 use reclaimed water – FL, CA, TX, AZ
 - Reclaimed water started 30+ years ago, but trend growing

- **POTW usage concerns**
 - Elevated nutrients
 - bacteria, fungi, algae
 - Forms slime coating on heat exchangers
 - Salts precipitate as scale
 - Phosphate and ammonia corrode metals
 - Emerging Concerns (typically ppb and ppt range) – Discharge, Return, Drift
 - Endocrine Disruptors (modifiers), PPCP, others

Figure 8: Cooling Tower Makeup Water Reuse Sources
Reuse Impediments

- Transmission line routing
 - ROW Issues – Private, Highway, Rail lines
 - Multiple Ownership
 - Efficiency Loss from Pumping Long Distances
 - Cost of Lines

- Storage
 - Closed v. Open Tanks
 - Impoundments
 - Polymer/Alum for TSS – “burps” – flocculation & settling
 - Disinfection/residual

- Where to discharge?
 - Return line to POTW
 - Surface Discharge
 - ZLD – evaporation/crystallization; Evaporation Ponds

- Higher recycle rates concentrate salts, constituents
 - TDS
 - Metals
 - Nitrogen/Nutrients to TMDL Limited waters
Reuse Impediments

- Regulatory
 - discharge quality, maintain low flow in streams
 - Cross basin transfer issues with discharge?
 - If recycle municipal wastewater, concentrate other constituents with discharge back to POTW – increased fees for concentrated wastewater?
 - Cost of reclaim water supply?
 - Cost of discharge v. ZLD?
 - Drift Constituents
 - Air Toxics, 316(b),
 - Effluent Guidelines, Nutrients rules
 - Worker Safety Programs
 - Purple Pipe
 - Training
 - Immunizations
Reclaimed Municipal Wastewater can be used for Cooling Tower Makeup at Power Plants, but…

- Almost all states have adopted some regulations
- 34 states have detailed regulations
- 16 states have guidelines or design standard
- Reuse may be permitted on a case-by-case basis
<table>
<thead>
<tr>
<th>State</th>
<th>Date</th>
<th>Regulation – (Other Parameters in Regulations)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FL</td>
<td>Nov 2009</td>
<td>5 mg/l TSS; 20 mg/l CBOD5; C.T. - 300 ft setback, minimize drift</td>
</tr>
<tr>
<td>CA</td>
<td>Jan 2009</td>
<td>2.2 MPN/100 ml (7 day)</td>
</tr>
<tr>
<td>TX</td>
<td>Nov 2009</td>
<td>5 mg/l BOD; 3 NTU; 20 CFU/2100 ml</td>
</tr>
<tr>
<td>AZ</td>
<td>Jan 2001</td>
<td><2 NTU; 23/100 ml</td>
</tr>
<tr>
<td>CO</td>
<td>Nov 2007</td>
<td>126/100 ml (class 2 /class 3)</td>
</tr>
<tr>
<td>VA</td>
<td>Jan 2010</td>
<td>14/100 ml FC</td>
</tr>
<tr>
<td>WA</td>
<td>Dec 2010</td>
<td>2.2/100 ml; BOD,30 mg/l</td>
</tr>
<tr>
<td>OR</td>
<td>Jun 2009</td>
<td>Oxidized. Filtered, NTU, bacteria</td>
</tr>
<tr>
<td>NC</td>
<td>2008</td>
<td>14/100 ml FC; TSS 5 mg/l; BOD 10 mg/l</td>
</tr>
<tr>
<td>MA</td>
<td>2000</td>
<td>0/100 (median); no test over 14/100 ml FC</td>
</tr>
</tbody>
</table>
Why US EPA Guidelines Updated in 2004?

- Emerging pathogens
- Increasing pressure on water resources
- Emerging pollutants of concern
 - PCPs - Personal Care Products
 - PhAC - Pharmaceutical Active Compounds
 - PPCPs - Pharmaceuticals and Personal Care Products
 - alkylphenol ethoxylates (APEOs) surfactants
 - polycyclic aromatic hydrocarbons (PAHs)
 - EDCs- Endocrine Disrupting Compounds/Chemicals
Management of Reclaimed Water CT

- Chemical control
 - Biofouling Control (slime control – bacteria, fungi, algae)
 - Sodium hypochlorite
 - Monochlormine
 - Scale Control
 - Chemical
 - pH control and dispersants
 - Polymaleic acid
 - Tetra-potassium pyrophosphate
 - Corrosion Control (phosphate, ammonia)
 - Tolytriazole
 - Sodium bromide
- Physical
 - SS, Titanium, or plastic piping
 - high flow rates for scaling issues
Treatment - Reclaimed CT Water

<table>
<thead>
<tr>
<th>Recirculated Cooling</th>
<th>Blowdown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment for cooling tower cycles of concentration</td>
<td>Chemical</td>
</tr>
<tr>
<td>Filtration/backwash</td>
<td>MF/UF</td>
</tr>
<tr>
<td>Lime softening</td>
<td>RO</td>
</tr>
<tr>
<td>Alum precipitation</td>
<td>AOP</td>
</tr>
<tr>
<td>Ion Exchange</td>
<td>UV</td>
</tr>
<tr>
<td>Membranes</td>
<td>H$_2$O$_2$</td>
</tr>
<tr>
<td>pH control</td>
<td>O$_3$</td>
</tr>
<tr>
<td>Solids/sludge management</td>
<td></td>
</tr>
</tbody>
</table>
Case Study Examples

<table>
<thead>
<tr>
<th>Usage of Reclaimed Water</th>
<th>Number of Facilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooling Tower makeup</td>
<td>46</td>
</tr>
<tr>
<td>Cooling Ponds</td>
<td>2</td>
</tr>
<tr>
<td>Air Scrubbers</td>
<td>2</td>
</tr>
<tr>
<td>Injected to Increase Pressure at Geothermal Fields</td>
<td>2</td>
</tr>
<tr>
<td>Boiler Feed Water</td>
<td>1</td>
</tr>
<tr>
<td>Cooling Tower Makeup and Scrubber Water</td>
<td>1</td>
</tr>
</tbody>
</table>
Case Study Examples – Panda Plant, MD

- 248 MW Combined Cycle - 1997
- 1.5 mgd in 17 mile pipeline
- 8-10 cycles of concentration
- Mattawoman POTW
 - UV Disinfection
 - Panda adds sodium hypochlorite
 - POTW discharge limit 3 mg/l N

Panda Plant Aerial View
Reclaim Water
Cooling Tower
Recirculation pumps
South Florida

Miami Dade SW WWTP Effluent to Cool the Proposed FPL Turkey Point Nuclear Reactor Unit 7 – 75 MGD

- Citizens Groups challenged on many issues
- Florida Crocodiles
- Endocrine Disrupters, PPCP in Drift
West Basin Recycling Facility Produces 5 types of Reclaimed Water (30 mgd)

- Tertiary Water (Title 22) for a variety of industrial and irrigation uses;
- Nitrified Water for industrial cooling towers;
- Softened Reverse Osmosis Water: Secondary treated wastewater purified by micro-filtration (MF), reverse osmosis (RO), and disinfection for groundwater recharge;
- Pure Reverse Osmosis Water for refinery low-pressure boiler feed water; and
- Ultra-Pure Reverse Osmosis Water for refinery high-pressure boiler feed water.
Contaminants of Emerging Concern (CEC)

- Pharmaceuticals and Endocrine Disruptors
- Natural hormones – human or animal
 - Natural chemicals – produced by plants – phyto-estrogens
 - Synthetic pharmaceuticals hormonally active – such as the contraceptive pill
- Other man-made chemicals. Including:
 - cosmetics, medical compounds, pesticides, industrial chemicals
 - Alkylphenols; polycyclic aromatic hydrocarbons;
 - organohalogenes; triorganotins
Surfactants and Pesticides

- **Surfactants**
 - Alkyl Phenol Ethoxylates (APEO) widely used in industries
 - Nonylphenol ethoxylate is the most common
 - APEOs tend to be degraded to more potent endocrine disrupting compounds during wastewater treatment

- **Pesticides**
 - Largest group of EDCs
 - DDT, dieldrin, 2,4-D, tributyltin, atrazine, metolachlor, cyanazine, alachlor
 - All herbicides, fungicides, pesticides
 - Atrazine the most difficult to remove

- **Other Compounds**
 - Polyaromatics, PCB, flame retardants, phthalates
Potency of Steroid Compounds

<table>
<thead>
<tr>
<th>EDC</th>
<th>Lowest Observed Effective concentration (LOEC)-Rainbow Trout</th>
<th>WWTP Effluent Concentrations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estradiol</td>
<td>1 ng/l</td>
<td><0.2 – 3 ng/l</td>
</tr>
<tr>
<td>Ethinyl estradiol</td>
<td>0.1 ng/l</td>
<td><0.2 – 3 ng/l</td>
</tr>
<tr>
<td>Nonylphenol</td>
<td>14,000 ng/l</td>
<td><80 – 923 ng/l</td>
</tr>
<tr>
<td>Bisphenol A</td>
<td>25,000 ng/l</td>
<td>8 – 33 ng/l</td>
</tr>
</tbody>
</table>

German Study – Berlin Ruhlenben WWTP – Hansen et al, 1998)
Zora’a Vineyard (Kibbutz Tzora)

- Hebrew University studied health risks of drift from spray irrigation with reclaimed water
 - no increased incidence of disease in reclaimed water-user & workers compared to other workers.
- 30 km creek system from Jerusalem, secondary, disinfected effluent
- Used since 1960s
- 40 ha vineyard growing sauvignon blanc and cabernet sauvignon for own small boutique winery. Potable water after budding
- The Kibbutz also has a 50 ha almond orchard, 200 ha of olives and a 900 cow dairy from which the off-run water is used directly for cotton growing.
Blowdown/Effluent Treatment

- Passive Treatment
- Active Treatment
Passive Treatment - Constructed Wetlands

- Imitate the environment
- Aerobic, anoxic & anaerobic zones
- Effective at mercury removal to very low levels (0.04-0.09 to <0.008 µg/L)
- Removes COD, BOD, ammonia
- Other ions
 - manganese – boron - selenium
Active Treatment Processes

- Wastewater treatment – particularly higher SRTs (nitrification and BNR/ENR) can provide significant removals.
- Granular Activated Carbon
- Reverse Osmosis
- Advanced Oxidation Processes
 - UV
 - H2O2
 - O3
Treatment Efficiencies

<table>
<thead>
<tr>
<th>EDC Classification</th>
<th>Coagulation/ Flocculation</th>
<th>Softening/ metal oxides</th>
<th>CL2/ ClO2</th>
<th>UV</th>
<th>Ozone/ AOPs</th>
<th>Activated Carbon</th>
<th>BAC</th>
<th>NF</th>
<th>RO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pesticides</td>
<td><20%</td>
<td>70-90%</td>
<td>70-90%</td>
<td>>90%</td>
<td>20-90%</td>
<td>>90%</td>
<td>90%</td>
<td>70-90%</td>
<td>>90%</td>
</tr>
<tr>
<td>Industrial Chemicals</td>
<td><20-40%</td>
<td><20-40%</td>
<td><20%</td>
<td>>90%</td>
<td>40-90%</td>
<td>>90%</td>
<td>>90%</td>
<td>>90%</td>
<td>>90%</td>
</tr>
<tr>
<td>Steroids</td>
<td><20%</td>
<td><20-40%</td>
<td>>90%</td>
<td>>90%</td>
<td>>90%</td>
<td>>90%</td>
<td>>90%</td>
<td>70-90%</td>
<td>>90%</td>
</tr>
<tr>
<td>Metals</td>
<td>40-90%</td>
<td>40-90%</td>
<td><20%</td>
<td><20%</td>
<td><20-40%</td>
<td>40-70%</td>
<td>70-90%</td>
<td>>90%</td>
<td></td>
</tr>
<tr>
<td>Inorganics</td>
<td><20%</td>
<td>70-90%</td>
<td><20%</td>
<td>40-90%</td>
<td>20-90%</td>
<td>70-90%</td>
<td>70-90%</td>
<td>70-90%</td>
<td>>90%</td>
</tr>
<tr>
<td>Organometalics</td>
<td><20-40%</td>
<td><20-40%</td>
<td><20-70%</td>
<td>40-90%</td>
<td>20-90%</td>
<td>70-90%</td>
<td>70-90%</td>
<td>70-90%</td>
<td>>90%</td>
</tr>
</tbody>
</table>
Conclusions

Coming “Perfect Storm” impacting Power Plants – more cooling towers!
- Reuse growing quickly
- Many different standards/concerns
 - Bacteria, TSS, turbidity, etc.
 - Virus
 - Endocrine Disruptors - Estrogens
 - PPCP
 - Others
- Lots of Impediments to Overcome
- Good History Worldwide
- Public Perception
 - Don’t Underestimate Public Opinion!

Advantages
- History of successful projects
- Reduces pollutant load in discharges
- Saves potable water
- Provides reliable supply
- May save energy
QUESTIONS??

Thank You
ivan_cooper@golder.com