DO$_2$ MEASUREMENT TECHNOLOGY IN STEAM CYCLE WATER

ELECTROCHEMICAL VERSUS OPTICAL

Greg Thomas
Hach Company
PRESENTATION OVERVIEW

• Dissolved Oxygen Measurement
• Electrochemical technology
• Optical technology
• Results
• Benefits
DISSOLVED OXYGEN MEASUREMENT

Wet Chemistry

• Winkler titration

• Colorimetric tests
 — Packaged kits

Instrumentation

• Electrochemical sensors
 — Standard for many years

• Optical (luminescent) sensors
 — ppm level
 — ppb level
ELECTROCHEMICAL (EC) SENSOR

Electrochemical reaction generated after O$_2$ passes through the membrane

Minimum sample flow required

O$_2$ is reduced below the membrane

Guard ring (Silver)

Anode (Silver)

Sample

Membrane

Electrolyte

Cathode (Gold)
EC SENSOR SIGNAL

- Reduction: \(2 \text{H}_2\text{O} + \text{O}_2 + 4\text{e}^- \rightarrow 4\text{OH}^- \)
- Oxidation: \(4\text{Ag} \rightarrow 4\text{Ag}^+ + 4\text{e}^- \)
- Overall: \(2\text{H}_2\text{O} + 4\text{Ag} + \text{O}_2 \rightarrow 4\text{Ag}^+ + 4\text{OH}^- \)

\[i = (\phi_{\text{temp}}) P_{\text{gas}} \]
- partial pressure \(\leftrightarrow\) concentration
- Henry’s Law \((c\text{O}_2 \propto p\text{O}_2)\)
BASIC OPTICAL PRINCIPLE

- A wave of blue light is emitted
- The active luminescent compound is excited
- The active compound emits red light
- The red light is detected
SIGNAL - PHASE SHIFT TO DO₂

O₂ partial pressure ⇔ phase shift

Stern-Volmer equation

\[f_0 = \text{constant} \]
\[K_{sv} = \text{sensitivity of active spot (known)} \]
\[\Phi_0 = \text{phase in the absence of O}_2 \]

Partial pressure ⇔ concentration

Henry’s Law \((cO_2 \propto pO_2) \)

\[pO_2 = \frac{(\Phi_0 - \Phi)}{K_{sv} [\Phi - \Phi_0 (1 - f_0)]} \]

O₂ quenches the luminescence

Same with EC measurement

SINGLE POINT CALIBRATION
THEORY: EC VS. OPTICAL

EC – Electrochemical

- Smallest signal at zero

Cal in air
- 20% $O_2 \leftrightarrow 8$ ppm dO_2
- One point cal with fixed zero or zero adjustment to determine slope

Optical - Luminescence

- Largest signal at zero

Cal in N_2 gas
- Fixed slope (K_{SV}), hence one point cal at zero O_2
DO$_2$ RESULTS – IN THE LAB

Laboratory Results
RESULTS – FEEDWATER

Feedwater - AVT

O₂ leak test

dO 70 ppb peak
RESULTS EXPANDED EC VS. OPTICAL

Cracked fitting to produce O₂ leak
EC VS. OPTICAL

Repeatability K1100 (r^{95}) < 0.1 μg kg⁻¹

Difference K1100-EC < 0.4 μg kg⁻¹

AVT boiler FW sample
BWR IN HWC

Electrolyser stopped
No H₂ injection

Measurements below 0.6µg·kg⁻¹

Reactor water sample
FLOW SENSITIVITY

No effect of flow

Flow stopped

Flow started

OT FW
SPECIFICATIONS: EC VS. OPTICAL

EC
- Accuracy +/- 1 to 0.1 ppb
 - Detection limit 1 ppb to 0.1 ppb
 - Most are 1 ppb
- Consumes O₂
 - Minimum flow required
- ~ 6 month maintenance interval
 - Influenced by O₂ concentration and temperature

OPTICAL
- Accuracy +/- 1 ppb
 - Detection limit 1 ppb
- Does not consume O₂
 - No flow required
- 12 month maintenance interval
 - Not influenced by O₂ concentration or temperature
BENEFITS OF OPTICAL DO$_2$ TECHNOLOGY

• Optical performance comparable to EC

• Dry sensor with no membrane, no electrolyte and no chemical cleaning

• Not flow dependence

• Not influenced by the presence of magnetite on the sensor head

• Only 5 minute optical spot replacement and calibration every 12 months
THANK YOU FOR YOUR ATTENTION