

Application of Boiler Feed Pumps in Combined Cycle, Thermosolar, & Biomass

Historical Perspective

In the days of coal-fired power plants...

- Feed Pumps were Barrel Pumps
- Turbine Drive or Geared FC Drive
 - High Speed 4500 to 6000 RPM
 - 4-6 Stages
- Booster Pumps Common
- Base Loaded, Steady State Operation
- For a 500 MW Plant:
 - Two 50% Pumps, ~4500 GPM Each
 - 7500 Feet TDH Subcritical
 - 11,500 Feet TDH Supercritical

Barrel (Diffuser)

To 21,000 GPM, 12,000 Feet, 7000 PSIG, 6000 RPM

Current Market

Natural gas is dominant...

- Combined Cycle (GT + HRSG)
- Primarily Ring Sectional Pumps, Some Horizontally Split
- Motor Drive, Direct or via Fluid Coupling
 - Two-Pole Speed Nominal 3580 RPM for 60 HZ
 - 7-13 Stages
- Booster Pumps are Rare
- Daily Cycling
- For a 500 MW Plant:
 - Four 100% Pumps per HRSG, ~1500 GPM Each
 - 5000 to 6000 Feet TDH

Current Market

Thermosolar & Biomass

- Pumps are Similar to CC for Largest Thermosolar & Biomass Plants
- Plant Size, and thus Pump Size, Varies Significantly
- Smallest Biomass Plants Approaching "Industrial" Size Boilers & Pumps
- Pump Manufacturers Need Wide Range of Products

Ring Section

To 5000 GPM, 8000 Feet, 4000 PSIG, 5000 RPM

Horizontally Split

To 5000 GPM, 7500 Feet, 4000 PSIG, 6000 RPM

Requirements & Features

- Rapid Start-Up & Daily Cycling
 - No Warming
- Thermal Transients
 - Axisymmetric Design
 - Uniform Wall Thickness
- High Interstage Takeoffs (25% of Suction Flow)
 - Ability to "Mix" Hydraulics within Pump
 - Thrust Balance Important

Other Considerations

- Combined Cycle focused on Low Initial Cost
- Thermosolar focused on Power Consumption
 Virtually all are Variable Speed (VFD or FC)
- Low NPSHa for Thermosolar & Biomass
- Plants run with Minimal Staff
 - Instrumentation for Remote Operation
 - Trust to OEM for Guidance

Impact of NPSHa

- Nss = (N x Qeye^.5)/NPSHr^.75
- Reasonable Value ~ 10,500
- Reasonable NPSHa/NPSHr Margin ~ 1.8
- Double Suction Available
- Booster Pumps Available but Not Common

Suction Performance

FLOWSERVE

Efficiency vs. Stage Count

Impact of Specific Speed

- Ns = (N x Q^.5)/Hstg^.75
- Too Low >>> Low Efficiency
- Too High >>> Unstable Curve Shape

Specific Speed

FLOWSERVE

Impact of Variable Speed

Experience

Questions?

FLOWSERVE