

Introduction

- •This presentation will focus on evaluating existing precipitators ability to meet proposed Utility MACT regulations.
- The majority of existing ESP's are not operating under their original design basis.
- Numerous operating ESPs have not been upgraded with modern operating philosophies or equipment.
- •A holistic approach in evaluating the precipitator's current operating parameters to permit a viable plan forward.
- Many Important operating parameters have been modified as additional post combustion control equipment like SO3, NOx, and Hg control have been incorporated over the last few years.

Evaluate Existing ESP

- Original Design
 - Fuel, Gas Flow, Efficiency
 - Velocity, Treatment Time, Aspect Ratio
 - Electrical Energization and Sectionalization
 - Rapping Sectionalization
 - Basic Footprint
 - Establish current baseline flow conditions with flow model

Evaluate Existing ESP

- Current Process
 - •Fuel, Gas Flow, Efficiency
 - •Any upgrades to ESP?
 - Review recent stack tests
 - •Review/Perform complete Internal Inspection
 - •Has equipment been added:
 - •SCR, FGD, FGC
 - Particle Size Distribution
 - Review maintenance program
 - Quantify performance impacts in computer model

To Achieve 0.020 lb/mmBtu Efficiency

- Improve Uniformity of Gas Entering Precipitator
- Increase Migration Velocity of Particle
- •Increase Gas Treatment Time/Decrease Gas Velocity
- Reduce Reentrainment from Rappers, Hoppers, etc.

Quantify performance impacts with models for each option or combined options

Improve Uniformity of Gas Entering ESP

- •Establishes foundation for all other improvements to be maximized
- Internal Inspection
 - Review Flow Patterns on Devices
 - Record Data
- Physical Model Study

Increase Migration Velocity of Particle

- Voltage and Voltage Increase Voltage
- Mechanical Limitations
 - •Improve Clearances
 - Increase Plate Spacing
- Electrical Limitations
 - •Improve Power Supply (new high frequency power supplies)
 - •Improve Electrical Sectionalization
 - Upgrade Discharge Electrodes
- Gas Conditioning in high resistivity cases

Increase Gas Treatment Time/Decrease Gas Velocity

- Reduce Excess Air
 - Door Gaskets
 - Casing Holes
 - Duct Holes
- •Review/Lower Gas Temperature
- Increase Length or Height

Reduce Reentrainment

- Optimize Rapping Sequence
- Increase Sectionalization
- Upgrade Rapper Style
- Review Hopper Evacuation System
- Improve Gas flow in hopper areas
- Gas Conditioning

Conclusion

- No "one size fits all" approach to proposed Utility MACT
- New Technologies and Philosophies are available
- •Whether considering a new ESP chamber or upgrading an existing ESP, if properly sized and maintained it will provide for many years of reliable operation in meeting ever increasing regulation.

Contact Info:

Greg Carleton greg@pcsesp.com (850)516-9608 Paul Leanza paul@pcsesp.com (850)341-3972